scispace - formally typeset
Search or ask a question
Author

Tomaz Prosen

Bio: Tomaz Prosen is an academic researcher from University of Ljubljana. The author has contributed to research in topics: Quantum & Integrable system. The author has an hindex of 35, co-authored 160 publications receiving 4342 citations. Previous affiliations of Tomaz Prosen include University of Potsdam & University of Maribor.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a review of different regimes for fidelity decay in quantum information processes, and give the theory that supports them, and show some important applications and experiments, using time correlation functions as a backbone for the discussion.
Abstract: Fidelity serves as a benchmark for the relieability in quantum information processes, and has recently atracted much interest as a measure of the susceptibility of dynamics to perturbations. A rich variety of regimes for fidelity decay have emerged. The purpose of the present review is to describe these regimes, to give the theory that supports them, and to show some important applications and experiments. While we mention several approaches we use time correlation functions as a backbone for the discussion. Vanicek's uniform approach to semiclassics and random matrix theory provides an important alternative or complementary aspects. Other methods will be mentioned as we go along. Recent experiments in micro-wave cavities and in elastodynamic systems as well as suggestions for experiments in quantum optics shall be discussed.

380 citations

Journal ArticleDOI
TL;DR: In this paper, the Lindblad master equation for an arbitrary quadratic system of n fermions is solved explicitly in terms of diagonalization of a 4n?4n matrix, provided that all bath operators are linear in the fermionic variables.
Abstract: The Lindblad master equation for an arbitrary quadratic system of n fermions is solved explicitly in terms of diagonalization of a 4n?4n matrix, provided that all Lindblad bath operators are linear in the fermionic variables. The method is applied to the explicit construction of non-equilibrium steady states (NESS) and the calculation of asymptotic relaxation rates in the far from equilibrium problem of heat and spin transport in a nearest neighbour Heisenberg XY spin-1/2 chain in a transverse magnetic field.

289 citations

Journal ArticleDOI
TL;DR: In this article, the concept of quasilocal conserved quantities has been studied in integrable quantum lattice systems, and two systematic procedures to rigorously construct families of conserved operators based on quantum transfer matrices are outlined, specializing on anisotropic Heisenberg XXZ spin 1/2 chain.
Abstract: We review recent progress in understanding the notion of locality in integrable quantum lattice systems. The central concept concerns the so-called quasilocal conserved quantities, which go beyond the standard perception of locality. Two systematic procedures to rigorously construct families of quasilocal conserved operators based on quantum transfer matrices are outlined, specializing on anisotropic Heisenberg XXZ spin-1/2 chain. Quasilocal conserved operators stem from two distinct classes of representations of the auxiliary space algebra, comprised of unitary (compact) representations, which can be naturally linked to the fusion algebra and quasiparticle content of the model, and non-unitary (non-compact) representations giving rise to charges, manifestly orthogonal to the unitary ones. Various condensed matter applications in which quasilocal conservation laws play an essential role are presented, with special emphasis on their implications for anomalous transport properties (finite Drude weight) and relaxation to non-thermal steady states in the quantum quench scenario.

279 citations

Journal ArticleDOI
TL;DR: In this article, the Lindblad master equation for an arbitrary quadratic system of n fermions is solved explicitly in terms of diagonalization of a 4n x 4n matrix, provided that all bath operators are linear in the fermionic variables.
Abstract: The Lindblad master equation for an arbitrary quadratic system of n fermions is solved explicitly in terms of diagonalization of a 4n x 4n matrix, provided that all Lindblad bath operators are linear in the fermionic variables. The method is applied to the explicit construction of non-equilibrium steady states and the calculation of asymptotic relaxation rates in the far from equilibrium problem of heat and spin transport in a nearest neighbor Heisenberg XY spin 1/2 chain in a transverse magnetic field.

276 citations

Journal ArticleDOI
TL;DR: In this paper, a time-dependent density matrix renormalization group method with a matrix product ansatz is employed for explicit computation of non-equilibrium steady state density operators of several integrable and non-integrable quantum spin chains, which are driven far from equilibrium by means of Markovian couplings to external baths at the two ends.
Abstract: Time-dependent density matrix renormalization group method with a matrix product ansatz is employed for explicit computation of non-equilibrium steady state density operators of several integrable and non-integrable quantum spin chains, which are driven far from equilibrium by means of Markovian couplings to external baths at the two ends. It is argued that even though the time-evolution can not be simulated efficiently due to fast entanglement growth, the steady states in and out of equilibrium can be typically accurately approximated, so that chains of length of the order n ~ 100 are accessible. Our results are demonstrated by performing explicit simulations of steady states and calculations of energy/spin densities/currents in several problems of heat and spin transport in quantum spin chains. Previously conjectured relation between quantum chaos and normal transport is re-confirmed with high acurracy on much larger systems.

203 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, it was shown that many of the symptoms of classicality can be induced in quantum systems by their environments, which leads to environment-induced superselection or einselection, a quantum process associated with selective loss of information.
Abstract: as quantum engineering. In the past two decades it has become increasingly clear that many (perhaps all) of the symptoms of classicality can be induced in quantum systems by their environments. Thus decoherence is caused by the interaction in which the environment in effect monitors certain observables of the system, destroying coherence between the pointer states corresponding to their eigenvalues. This leads to environment-induced superselection or einselection, a quantum process associated with selective loss of information. Einselected pointer states are stable. They can retain correlations with the rest of the universe in spite of the environment. Einselection enforces classicality by imposing an effective ban on the vast majority of the Hilbert space, eliminating especially the flagrantly nonlocal ''Schrodinger-cat states.'' The classical structure of phase space emerges from the quantum Hilbert space in the appropriate macroscopic limit. Combination of einselection with dynamics leads to the idealizations of a point and of a classical trajectory. In measurements, einselection replaces quantum entanglement between the apparatus and the measured system with the classical correlation. Only the preferred pointer observable of the apparatus can store information that has predictive power. When the measured quantum system is microscopic and isolated, this restriction on the predictive utility of its correlations with the macroscopic apparatus results in the effective ''collapse of the wave packet.'' The existential interpretation implied by einselection regards observers as open quantum systems, distinguished only by their ability to acquire, store, and process information. Spreading of the correlations with the effectively classical pointer states throughout the environment allows one to understand ''classical reality'' as a property based on the relatively objective existence of the einselected states. Effectively classical pointer states can be ''found out'' without being re-prepared, e.g, by intercepting the information already present in the environment. The redundancy of the records of pointer states in the environment (which can be thought of as their ''fitness'' in the Darwinian sense) is a measure of their classicality. A new symmetry appears in this setting. Environment-assisted invariance or envariance sheds new light on the nature of ignorance of the state of the system due to quantum correlations with the environment and leads to Born's rules and to reduced density matrices, ultimately justifying basic principles of the program of decoherence and einselection.

3,499 citations

Journal ArticleDOI
TL;DR: In this article, the properties of entanglement in many-body systems are reviewed and both bipartite and multipartite entanglements are considered, and the zero and finite temperature properties of entangled states in interacting spin, fermion and boson model systems are discussed.
Abstract: Recent interest in aspects common to quantum information and condensed matter has prompted a flurry of activity at the border of these disciplines that were far distant until a few years ago. Numerous interesting questions have been addressed so far. Here an important part of this field, the properties of the entanglement in many-body systems, are reviewed. The zero and finite temperature properties of entanglement in interacting spin, fermion, and boson model systems are discussed. Both bipartite and multipartite entanglement will be considered. In equilibrium entanglement is shown tightly connected to the characteristics of the phase diagram. The behavior of entanglement can be related, via certain witnesses, to thermodynamic quantities thus offering interesting possibilities for an experimental test. Out of equilibrium entangled states are generated and manipulated by means of many-body Hamiltonians.

3,096 citations

Journal ArticleDOI
TL;DR: Fractional dynamics has experienced a firm upswing during the past few years, having been forged into a mature framework in the theory of stochastic processes as mentioned in this paper, and a large number of research papers developing fractional dynamics further, or applying it to various systems have appeared since our first review article on the fractional Fokker-Planck equation.
Abstract: Fractional dynamics has experienced a firm upswing during the past few years, having been forged into a mature framework in the theory of stochastic processes. A large number of research papers developing fractional dynamics further, or applying it to various systems have appeared since our first review article on the fractional Fokker–Planck equation (Metzler R and Klafter J 2000a, Phys. Rep. 339 1–77). It therefore appears timely to put these new works in a cohesive perspective. In this review we cover both the theoretical modelling of sub- and superdiffusive processes, placing emphasis on superdiffusion, and the discussion of applications such as the correct formulation of boundary value problems to obtain the first passage time density function. We also discuss extensively the occurrence of anomalous dynamics in various fields ranging from nanoscale over biological to geophysical and environmental systems.

2,119 citations

Journal ArticleDOI
TL;DR: Baxter has inherited the mantle of Onsager who started the process by solving exactly the two-dimensional Ising model in 1944 as mentioned in this paper, and there has been a growing belief that all the twodimensional lattice statistical models will eventually be solved and that it will be Professor Baxter who solves them.
Abstract: R J Baxter 1982 London: Academic xii + 486 pp price £43.60 Over the past few years there has been a growing belief that all the twodimensional lattice statistical models will eventually be solved and that it will be Professor Baxter who solves them. Baxter has inherited the mantle of Onsager who started the process by solving exactly the two-dimensional Ising model in 1944.

1,658 citations