scispace - formally typeset
Search or ask a question
Author

Tomi Laurila

Bio: Tomi Laurila is an academic researcher from Aalto University. The author has contributed to research in topics: Amorphous carbon & Intermetallic. The author has an hindex of 33, co-authored 176 publications receiving 6357 citations. Previous affiliations of Tomi Laurila include University of Helsinki & Helsinki University of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a review of the literature on interfacial reactions between pure Sn or Sn-rich solders and common base metals used in Pb-free electronics production is presented.
Abstract: The objective of this review is to study interfacial reactions between pure Sn or Sn-rich solders, and common base metals used in Pb-free electronics production. In particular, the reasons leading to the observed interfacial reactions products and their metallurgical evolution have been analyzed. Results presented in the literature have been critically evaluated with the help of combined thermodynamic–kinetic approach based on the concept of local equilibrium and microstructural knowledge. The following conclusions have been reached: Firstly, the formations of intermetallic compounds in solid/liquid reaction couples are primarily controlled by the dissolution processes of base metals. Other factors that need be considered are the thermodynamic driving force for the formation of intermetallic compounds, their structures and concentration profiles in liquid. Secondly, annealing of solder interconnections in solid state can drastically change the microstructures formed in the solid/liquid reactions, especially if only one of the components in the solder takes part in the interfacial reactions. Thirdly, additional elements can have three major effects on the binary reactions between a base metal and Sn: (i) they can increase or decrease the reaction/growth rates, (ii) the additives can change the physical properties of the phases formed, and (iii) they can form additional reaction products or displace the binary equilibrium phases by forming new reaction products. Finally, if the local stable or metastable equilibrium is established at the interface, stability information together with kinetic considerations can provide a feasible approach to analyze interfacial reactions, which can have significant impact on the reliability of soldered electronics assemblies.

1,024 citations

Journal ArticleDOI
TL;DR: In this article, the effect of minor alloying and impurity elements, typically present in electronics manufacturing environment, on the interfacial reactions between Sn and Cu, which is the base system for Pb-free soldering is analyzed.
Abstract: The objective of this review is to study the effect of minor alloying and impurity elements, typically present in electronics manufacturing environment, on the interfacial reactions between Sn and Cu, which is the base system for Pb-free soldering. Especially, the reasons leading to the observed interfacial reaction layers and their microstructural evolution are analysed. The following conclusions have been reached. Alloying and impurity elements can have three major effects on the reactions between the Sn-based solder and the conductor metal: Firstly, they can increase or decrease the reaction/growth rate. Secondly, additives can change the physical properties of the phases formed (in the case of Cu and Sn, ɛ and η). Thirdly they can form additional reaction layers at the interface or they can displace the binary phases that would normally appear and form other reaction products instead. Further, the alloying and impurity elements can be divided roughly into two major categories: (i) elements (Ni, Au, Sb, In, Co, Pt, Pd, and Zn) that show marked solubility in the intermetallic compound (IMC) layer (generally take part in the interfacial reaction in question) and (ii) elements (Bi, Ag, Fe, Al, P, rare-earth elements, Ti and S) that are not extensively soluble in IMC layer (only change the activities of species taking part in the interfacial reaction and do not usually participate themselves). The elements belonging to category (i) usually have the most pronounced effect on IMC formation. It is also shown that by adding appropriate amounts of certain alloying elements to Sn-based solder, it is possible to tailor the properties of the interfacial compounds to exhibit, for example, better drop test reliability. Further, it is demonstrated that if excess amount of the same alloying elements are used, drastic decrease in reliability can occur. The analysis for this behaviour is based on the so-called thermodynamic–kinetic method.

288 citations

Book
20 Jul 2014
TL;DR: In this paper, Fick's laws of diffusion and the development of interdiffusion zone in different systems are discussed, as well as the Kirkendall effect in binary and multicomponent systems.
Abstract: Thermodynamics, phases and phase diagrams.- Structure of Materials.- Fick's laws of diffusion.- Development of interdiffusion zone in different systems.- Atomic mechanism of diffusion.- Interdiffusion and the Kirkendall effect in binary systems.- Growth of phases with narrow homogeneity range and line compounds by interdiffusion.- Microstructural evolution of the diffusion zone.- Interdiffusion in multicomponent systems.- Short circuit diffusion.- Reactive phase formation in thin film systems.

234 citations

Journal ArticleDOI
TL;DR: It is found that the large amount of internal strain present in ScAlN and its intricate relation with electric polarization make configurational sampling and the use of large supercells at different compositions necessary in order to accurately derive the piezoelectric response of the material.
Abstract: We present a computational study of spontaneous polarization and piezoelectricity in Sc(x)Al(1-x)N alloys in the compositional range from x = 0 to x = 0.5, obtained in the context of density functional theory and the Berry-phase theory of electric polarization using large periodic supercells. We report composition-dependent values of piezoelectric coefficients e(ij), piezoelectric moduli d(ij) and elastic constants C(ij). The theoretical findings are complemented with experimental measurement of e33 for a series of sputtered ScAlN films carried out with a piezoelectric resonator. The rapid increase with Sc content of the piezoelectric response reported in previous studies is confirmed for the available data. A detailed description of the full methodology required to calculate the piezoelectric properties of ScAlN, with application to other complex alloys, is presented. In particular, we find that the large amount of internal strain present in ScAlN and its intricate relation with electric polarization make configurational sampling and the use of large supercells at different compositions necessary in order to accurately derive the piezoelectric response of the material.

210 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive review is presented on the researches and developments related to electrospun polymer nanofibers including processing, structure and property characterization, applications, and modeling and simulations.

6,987 citations

Journal ArticleDOI
TL;DR: A review of technologies related to hydrogen production from both fossil and renewable biomass resources including reforming (steam, partial oxidation, autothermal, plasma, and aqueous phase) and pyrolysis is presented in this article.

2,673 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the effective thermal conductivity of mixtures of Al 2O3 and CuO, dispersed in water, vacuum pump, engine oil, and ethylene glycol.
Abstract: Effective thermal conductivity of mixtures of e uids and nanometer-size particles is measured by a steady-state parallel-plate method. The tested e uids contain two types of nanoparticles, Al 2O3 and CuO, dispersed in water, vacuum pump e uid, engine oil, and ethylene glycol. Experimental results show that the thermal conductivities of nanoparticle ‐e uid mixtures are higher than those of the base e uids. Using theoretical models of effective thermal conductivity of a mixture, we have demonstrated that the predicted thermal conductivities of nanoparticle ‐e uid mixtures are much lower than our measured data, indicating the dee ciency in the existing models when used for nanoparticle ‐e uid mixtures. Possible mechanisms contributing to enhancement of the thermal conductivity of the mixtures are discussed. A more comprehensive theory is needed to fully explain the behavior of nanoparticle ‐e uid mixtures. Nomenclature cp = specie c heat k = thermal conductivity L = thickness Pe = Peclet number P q = input power to heater 1 r = radius of particle S = cross-sectional area T = temperature U = velocity of particles relative to that of base e uids ® = ratio of thermal conductivity of particle to that of base liquid ¯ = .® i 1/=.® i 2/ ° = shear rate of e ow Ω = density A = volume fraction of particles in e uids Subscripts

2,156 citations

Journal ArticleDOI
TL;DR: In this article, the authors deal with the fundamental understanding of the process and its metallurgical consequences, focusing on heat generation, heat transfer and plastic flow during welding, elements of tool design, understanding defect formation and the structure and properties of the welded materials.

1,811 citations