scispace - formally typeset
Search or ask a question
Author

Tomitake Tsukihara

Other affiliations: University of Tokushima, Nagasaki University, Tottori University  ...read more
Bio: Tomitake Tsukihara is an academic researcher from University of Hyogo. The author has contributed to research in topics: Cytochrome c oxidase & Ferredoxin. The author has an hindex of 51, co-authored 217 publications receiving 12924 citations. Previous affiliations of Tomitake Tsukihara include University of Tokushima & Nagasaki University.


Papers
More filters
Journal ArticleDOI
24 May 1996-Science
TL;DR: Two possible proton pathways for pumping, each spanning from the matrix to the cytosolic surfaces, were identified, including hydrogen bonds, internal cavities likely to contain water molecules, and structures that could form hydrogen bonds with small possible conformational change of amino acid side chains.
Abstract: The crystal structure of bovine heart cytochrome c oxidase at 2.8 A resolution with an R value of 19.9 percent reveals 13 subunits, each different from the other, five phosphatidyl ethanolamines, three phosphatidyl glycerols and two cholates, two hemes A, and three copper, one magnesium, and one zinc. Of 3606 amino acid residues in the dimer, 3560 have been converged to a reasonable structure by refinement. A hydrogen-bonded system, including a propionate of a heme A (heme a), part of peptide backbone, and an imidazole ligand of CuA, could provide an electron transfer pathway between CuA and heme a. Two possible proton pathways for pumping, each spanning from the matrix to the cytosolic surfaces, were identified, including hydrogen bonds, internal cavities likely to contain water molecules, and structures that could form hydrogen bonds with small possible conformational change of amino acid side chains. Possible channels for chemical protons to produce H2O, for removing the produced water, and for O2, respectively, were identified.

2,053 citations

Journal ArticleDOI
25 Aug 1995-Science
TL;DR: The high resolution three-dimensional x-ray structure of the metal sites of bovine heart cytochrome c oxidase is reported, suggesting a dinuclear copper center with an unexpected structure similar to a [2Fe-2S]-type iron-sulfur center.
Abstract: The high resolution three-dimensional x-ray structure of the metal sites of bovine heart cytochrome c oxidase is reported. Cytochrome c oxidase is the largest membrane protein yet crystallized and analyzed at atomic resolution. Electron density distribution of the oxidized bovine cytochrome c oxidase at 2.8 A resolution indicates a dinuclear copper center with an unexpected structure similar to a [2Fe-2S]-type iron-sulfur center. Previously predicted zinc and magnesium sites have been located, the former bound by a nuclear encoded subunit on the matrix side of the membrane, and the latter situated between heme a3 and CuA, at the interface of subunits I and II. The O2 binding site contains heme a3 iron and copper atoms (CuB) with an interatomic distance of 4.5 A; there is no detectable bridging ligand between iron and copper atoms in spite of a strong antiferromagnetic coupling between them. A hydrogen bond is present between a hydroxyl group of the hydroxyfarnesylethyl side chain of heme a3 and an OH of a tyrosine. The tyrosine phenol plane is immediately adjacent and perpendicular to an imidazole group bonded to CuB, suggesting a possible role in intramolecular electron transfer or conformational control, the latter of which could induce the redox-coupled proton pumping. A phenyl group located halfway between a pyrrole plane of the heme a3 and an imidazole plane liganded to the other heme (heme a) could also influence electron transfer or conformational control.

1,319 citations

Journal ArticleDOI
02 Apr 2009-Nature
TL;DR: The crystal structure of the gap junction channel formed by human connexin 26 (Cx26), also known as GJB2, is reported at 3.5 Å resolution, and structural determinants of solute transport through the channel are discussed.
Abstract: Gap junctions consist of arrays of intercellular channels between adjacent cells that permit the exchange of ions and small molecules. Here we report the crystal structure of the gap junction channel formed by human connexin 26 (Cx26, also known as GJB2) at 3.5 A resolution, and discuss structural determinants of solute transport through the channel. The density map showed the two membrane-spanning hemichannels and the arrangement of the four transmembrane helices of the six protomers forming each hemichannel. The hemichannels feature a positively charged cytoplasmic entrance, a funnel, a negatively charged transmembrane pathway, and an extracellular cavity. The pore is narrowed at the funnel, which is formed by the six amino-terminal helices lining the wall of the channel, which thus determines the molecular size restriction at the channel entrance. The structure of the Cx26 gap junction channel also has implications for the gating of the channel by the transjunctional voltage.

629 citations

Journal ArticleDOI
TL;DR: The crystal structure of the bovine 20S proteasome is determined at 2.75 A resolution and a model of the immunoproteasome was predicted from this constitutive structure.

513 citations

Journal ArticleDOI
TL;DR: The results suggest that the flexibility of loop 108–118, facilitated by anchoring the enzyme into the membrane, is essential for controlling substrate access to the active site.
Abstract: The mitochondrial outer membrane-anchored monoamine oxidase (MAO) is a biochemically important flavoenzyme that catalyzes the deamination of biogenic and xenobiotic amines Its two subtypes, MAOA and MAOB, are linked to several psychiatric disorders and therefore are interesting targets for drug design To understand the relationship between structure and function of this enzyme, we extended our previous low-resolution rat MAOA structure to the high-resolution wild-type and G110A mutant human MAOA structures at 22 and 217 A, respectively The high-resolution MAOA structures are similar to those of rat MAOA and human MAOB, but different from the known structure of human MAOA [De Colibus L, et al (2005) Proc Natl Acad Sci USA 102:12684-12689], specifically regarding residues 108-118 and 210-216, which surround the substrate/inhibitor cavity The results confirm that the inhibitor selectivity of MAOA and MAOB is caused by the structural differences arising from Ile-335 in MAOA vs Tyr-326 in MAOB The structures exhibit a C-terminal transmembrane helix with clear electron density, as is also seen in rat MAOA Mutations on one residue of loop 108-118, G110, which is far from the active center but close to the membrane surface, cause the solubilized enzyme to undergo a dramatic drop in activity, but have less effect when the enzyme is anchored in the membrane These results suggest that the flexibility of loop 108-118, facilitated by anchoring the enzyme into the membrane, is essential for controlling substrate access to the active site We report on the observation of the structure-function relationship between a transmembrane helical anchor and an extra-membrane domain

494 citations


Cited by
More filters
Book ChapterDOI
TL;DR: The methods presented in the chapter have been applied to solve a large variety of problems, from inorganic molecules with 5 A unit cell to rotavirus of 700 A diameters crystallized in 700 × 1000 × 1400 A cell.
Abstract: Publisher Summary X-ray data can be collected with zero-, one-, and two-dimensional detectors, zero-dimensional (single counter) being the simplest and two-dimensional the most efficient in terms of measuring diffracted X-rays in all directions. To analyze the single-crystal diffraction data collected with these detectors, several computer programs have been developed. Two-dimensional detectors and related software are now predominantly used to measure and integrate diffraction from single crystals of biological macromolecules. Macromolecular crystallography is an iterative process. To monitor the progress, the HKL package provides two tools: (1) statistics, both weighted (χ2) and unweighted (R-merge), where the Bayesian reasoning and multicomponent error model helps obtain proper error estimates and (2) visualization of the process, which helps an operator to confirm that the process of data reduction, including the resulting statistics, is correct and allows the evaluation of the problems for which there are no good statistical criteria. Visualization also provides confidence that the point of diminishing returns in data collection and reduction has been reached. At that point, the effort should be directed to solving the structure. The methods presented in the chapter have been applied to solve a large variety of problems, from inorganic molecules with 5 A unit cell to rotavirus of 700 A diameters crystallized in 700 × 1000 × 1400 A cell.

31,667 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: A new membrane protein topology prediction method, TMHMM, based on a hidden Markov model is described and validated, and it is discovered that proteins with N(in)-C(in) topologies are strongly preferred in all examined organisms, except Caenorhabditis elegans, where the large number of 7TM receptors increases the counts for N(out)-C-in topologies.

11,453 citations

Journal ArticleDOI
10 Mar 1970

8,159 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations