scispace - formally typeset
Search or ask a question
Author

Tomohide Yasuda

Bio: Tomohide Yasuda is an academic researcher from Nagoya University. The author has contributed to research in topics: Glucose transporter & Protein family. The author has an hindex of 1, co-authored 1 publications receiving 75 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: This article identifies 52 genes in tomato putatively encoding sugar transporters, including the SUCROSE TRANSPORTER family, the SUGAR TRANSPorTER PROTEIN family, and established a nomenclature for all analyzed tomato sugarTransporters.
Abstract: The mobility of sugars between source and sink tissues in plants depends on sugar transport proteins. Studying the corresponding genes allows the manipulation of the sink strength of developing fruits, thereby improving fruit quality for human consumption. Tomato (Solanum lycopersicum) is both a major horticultural crop and a model for the development of fleshy fruits. In this article we provide a comprehensive inventory of tomato sugar transporters, including the SUCROSE TRANSPORTER family, the SUGAR TRANSPORTER PROTEIN family, the SUGAR FACILITATOR PROTEIN family, the POLYOL/MONOSACCHARIDE TRANSPORTER family, the INOSITOL TRANSPORTER family, the PLASTIDIC GLUCOSE TRANSLOCATOR family, the TONOPLAST MONOSACCHARIDE TRANSPORTER family and the VACUOLAR GLUCOSE TRANSPORTER family. Expressed sequence tag (EST) sequencing and phylogenetic analyses established a nomenclature for all analyzed tomato sugar transporters. In total we identified 52 genes in tomato putatively encoding sugar transporters. The expression of 29 sugar transporter genes in vegetative tissues and during fruit development was analyzed. Several sugar transporter genes were expressed in a tissue- or developmental stage-specific manner. This information will be helpful to better understand source to sink movement of photoassimilates in tomato. Identification of fruit-specific sugar transporters might be a first step to find novel genes contributing to tomato fruit sugar accumulation.

103 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that the ABA-responsive transcription factor MdAREB2 directly activates the expression of amylase and sugar transporter genes to promote soluble sugar accumulation, suggesting a mechanism by which ABA regulates sugar accumulation in plants.
Abstract: Sugars play important roles in plant growth and development, crop yield and quality, as well as responses to abiotic stresses. Abscisic acid (ABA) is a multifunctional hormone. However, the exact mechanism by which ABA regulates sugar accumulation is largely unknown in plants. Here, we tested the expression profile of several sugar transporter and amylase genes in response to ABA treatment. MdSUT2 and MdAREB2 were isolated and genetically transformed into apple (Malus domestica) to investigate their roles in ABA-induced sugar accumulation. The MdAREB2 transcription factor was found to bind to the promoters of the sugar transporter and amylase genes and activate their expression. Both MdAREB2 and MdSUT2 transgenic plants produced more soluble sugars than controls. Furthermore, MdAREB2 promoted the accumulation of sucrose and soluble sugars in an MdSUT2-dependent manner. Our results demonstrate that the ABA-responsive transcription factor MdAREB2 directly activates the expression of amylase and sugar transporter genes to promote soluble sugar accumulation, suggesting a mechanism by which ABA regulates sugar accumulation in plants.

126 citations

Journal ArticleDOI
Qiyu Xu1, Siyuan Chen1, Ren Yunjuan1, Shaolin Chen1, Johannes Liesche1 
TL;DR: In poplar, expression of PtaSUT4 was found to consistently respond to environmental stimuli, suggesting a significant role in the regulation of sugar export from leaves in this passive symplasmic phloem loader.
Abstract: Suc transporters (SUTs) play a key role in the allocation and partitioning of photosynthetically fixed carbon in plants. While a function could be assigned to many members of the SUT family, almost no information is available on their regulation. Here, the transcriptional regulation of SUTs in response to various environmental stimuli in the leaves of five dicots (Arabidopsis [Arabidopsis thaliana], soybean [Glycine max], potato [Solanum tuberosum], tomato [Solanumlycopersicum], and poplar [Populus spp.]) and four monocots (maize [Zeamays], rice [Oryza sativa], wheat [Triticum aestivum], and barley [Hordeum vulgare]) was investigated. Extensive data on expression of SUTs in relation to changes of environmental conditions were obtained through a global analysis of 168 transcriptomics data sets. Results were validated by quantitative PCR measurements and extended by the measurement of photosynthesis rate and phloem sugar content to draw insight on the correlation of SUT expression and sugar export from leaves. For the apoplasmic phloem loaders, a clear difference in transcriptional regulation in response to different environmental stimuli was observed. The consistent patterns of SUT expression under abiotic stress indicates which types of SUTs are involved in the regulation of leaf sugar status and in stress signaling. Furthermore, it is shown that down-regulation of phloem loading is likely to be caused by transcriptional regulation of SUTs, while up-regulation depends on post-transcriptional regulation. In poplar, expression of PtaSUT4 was found to consistently respond to environmental stimuli, suggesting a significant role in the regulation of sugar export from leaves in this passive symplasmic phloem loader.

108 citations

Journal ArticleDOI
TL;DR: An up-to-date analysis of the sugar homeostasis under abiotics stresses is presented as well as the structure and functions of sugar transporters under abiotic stresses are described.
Abstract: The sessile nature of plants' life is endowed with a highly evolved defense system to adapt and survive under environmental extremes. To combat such stresses, plants have developed complex and well-coordinated molecular and metabolic networks encompassing genes, metabolites, and acclimation responses. These modulate growth, photosynthesis, osmotic maintenance, and carbohydrate homeostasis. Under a given stress condition, sugars act as key players in stress perception, signaling, and are a regulatory hub for stress-mediated gene expression ensuring responses of osmotic adjustment, scavenging of reactive oxygen species, and maintaining the cellular energy status through carbon partitioning. Several sugar transporters are known to regulate carbohydrate partitioning and key signal transduction steps involved in the perception of biotic and abiotic stresses. Sugar transporters such as SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTER (SWEETs), SUCROSE TRANSPORTERS (SUTs), and MONOSACCHARIDE TRANSPORTERS (MSTs) are involved in sugar loading and unloading as well as long-distance transport (source to sink) besides orchestrating oxidative and osmotic stress tolerance. It is thus necessary to understand the structure-function relationship of these sugar transporters to fine-tune the abiotic stress-modulated responses. Advances in genomics have unraveled many sugars signaling components playing a key role in cross-talk in abiotic stress pathways. An integrated omics approach may aid in the identification and characterization of sugar transporters that could become targets for developing stress tolerance plants to mitigate climate change effects and improve crop yield. In this review, we have presented an up-to-date analysis of the sugar homeostasis under abiotic stresses as well as describe the structure and functions of sugar transporters under abiotic stresses.

100 citations

Journal ArticleDOI
01 Dec 2015-Gene
TL;DR: An exhaustive search of the tomato genome is conducted, leading to the identification of 29 SWEET genes, and the structures, conserved domains, and phylogenetic relationships of these protein-coding genes in detail are analyzed.

99 citations

Journal ArticleDOI
TL;DR: Inositol transporters from eukaryotic organisms are summarized, elucidating their vital role in regulating the intracellular distribution and uptake of inositol.

89 citations