scispace - formally typeset
Search or ask a question
Author

Tomoji Kawai

Bio: Tomoji Kawai is an academic researcher from Osaka University. The author has contributed to research in topics: Nanowire & Vapor–liquid–solid method. The author has an hindex of 34, co-authored 75 publications receiving 3843 citations. Previous affiliations of Tomoji Kawai include University of Tokyo & Shin-Etsu Chemical.


Papers
More filters
Journal ArticleDOI
15 Dec 2006-Science
TL;DR: Controlled self-assembly of a trinitrofluorenone-appended gemini-shaped amphiphilic hexabenzocoronene selectively formed nanotubes or microfibers with different photochemical properties are presented.
Abstract: Controlled self-assembly of a trinitrofluorenone-appended gemini-shaped amphiphilic hexabenzocoronene selectively formed nanotubes or microfibers with different photochemical properties. In these nanotubes, which are 16 nanometers in diameter and several micrometers long, a molecular layer of electron-accepting trinitrofluorenone laminates an electron-donating graphitic layer of π-stacked hexabenzocoronene. The coaxial nanotubular structure allows photochemical generation of spatially separated charge carriers and a quick photoconductive response with a large on/off ratio greater than 104. In sharp contrast, the microfibers consist of a charge-transfer complex between the hexabenzocoronene and trinitrofluorenone parts and exhibit almost no photocurrent generation.

617 citations

Journal ArticleDOI
TL;DR: Electrical detection of single nucleotides using two configurable nanoelectrodes and shows that electron transport through singleucleotides occurs by tunnelling, thereby providing an experimental basis for a DNA sequencing technology based on measurements of electron transport.
Abstract: A major goal in medical research is to develop a DNA sequencing technique that is capable of reading an entire human genome at low cost1,2,3,4. Recently, it was proposed that DNA sequencing could be performed by measuring the electron transport properties of the individual nucleotides in a DNA molecule5. Here, we report electrical detection of single nucleotides using two configurable nanoelectrodes and show that electron transport through single nucleotides occurs by tunnelling. We also demonstrate statistical identification of the nucleotides based on their electrical conductivity, thereby providing an experimental basis for a DNA sequencing technology based on measurements of electron transport. Adjustable nanoelectrodes have been used to measure tunnelling currents through single nucleotides, and could form the basis of a new approach to DNA sequencing.

421 citations

Journal ArticleDOI
TL;DR: This work demonstrates the multistate bipolar RS of a single Co(3)O(4) nanowire (10 nm scale) with the endurance up to 10(8) and succeeds to extract a voltage-induced nanoscale RS mechanism rather than current-induced RS.
Abstract: A multistate nonvolatile memory operated at sublithographic scale has been strongly desired since other nonvolatile memories have confronted the fundamental size limits owing to their working principles. Resistive switching (RS) in metal−oxide−metal junctions, so-called ReRAM, is promising for next generation high-density nonvolatile memory. Self-assembled oxide nanowire-based RS offers an attractive solution not only to reduce the device size beyond the limitation of current lithographic length scales but also to extract the underlying nanoscale RS mechanisms. Here we demonstrate the multistate bipolar RS of a single Co3O4 nanowire (10 nm scale) with the endurance up to 108. In addition, we succeeded to extract a voltage-induced nanoscale RS mechanism rather than current-induced RS. These findings would open up opportunities to explore not only for the intrinsic nanoscale RS mechanisms with the ultimate size limit but also for next generation multistate three-dimensional ReRAM.

239 citations

Journal ArticleDOI
TL;DR: This work reports single-molecule DNA sequencing with a scanning tunnelling microscope by using an oblique pulse-injection method to deposit the molecules onto a copper surface and shows that guanine bases have a distinct electronic state that allows them to be distinguished from the other nucleic acid bases.
Abstract: The scanning tunnelling microscope is capable of the real-space imaging and spectroscopy of molecules on an atomic scale. Numerous attempts have been made to use the scanning tunnelling microscope to sequence single DNA molecules, but difficulties in preparing samples of long-chain DNA molecules on surfaces, and problems in reproducing results have limited these experiments1,2,3,4,5,6. Here, we report single-molecule DNA sequencing with a scanning tunnelling microscope by using an oblique pulse-injection method to deposit the molecules onto a copper surface. First, we show that guanine bases have a distinct electronic state that allows them to be distinguished from the other nucleic acid bases. Then, by comparing data on M13mp18, a single-stranded phage DNA, with a known base sequence7, the ‘electronic fingerprint’ of guanine bases in the DNA molecule is identified. These results show that it is possible to sequence individual guanine bases in real long-chain DNA molecules with high-resolution scanning tunnelling microscope imaging and spectroscopy. It is possible to sequence individual guanine bases in long-chain DNA molecules using a scanning tunnelling microscope by exploiting a distinct electronic state in the base molecule.

185 citations

Journal ArticleDOI
TL;DR: The junction self-breaking processes involve sufficient atomic rearrangements to allow complete self-compensation of externally introduced strain at 0.8 pm/s, which has important implications on fabrication of stable single molecule junctions.
Abstract: The self-breaking mechanism of gold junctions is studied by investigating stability of the atom-sized contacts. The single atom contact lifetime increases from about 0.02 to 200 s upon decreasing the junction stretching speed, while at the same time, the breaking force diminishes logarithmically. We find that the junction self-breaking processes involve sufficient atomic rearrangements, which thereby allow complete self-compensation of externally introduced strain at 0.8 pm/s. The present results have important implications on fabrication of stable single molecule junctions.

151 citations


Cited by
More filters
Journal ArticleDOI

3,711 citations

Journal ArticleDOI
TL;DR: The performance requirements for computing with memristive devices are examined and how the outstanding challenges could be met are examined.
Abstract: Memristive devices are electrical resistance switches that can retain a state of internal resistance based on the history of applied voltage and current. These devices can store and process information, and offer several key performance characteristics that exceed conventional integrated circuit technology. An important class of memristive devices are two-terminal resistance switches based on ionic motion, which are built from a simple conductor/insulator/conductor thin-film stack. These devices were originally conceived in the late 1960s and recent progress has led to fast, low-energy, high-endurance devices that can be scaled down to less than 10 nm and stacked in three dimensions. However, the underlying device mechanisms remain unclear, which is a significant barrier to their widespread application. Here, we review recent progress in the development and understanding of memristive devices. We also examine the performance requirements for computing with memristive devices and detail how the outstanding challenges could be met.

3,037 citations

Journal ArticleDOI
17 Feb 2012-Science
TL;DR: The specific features of supramolecular polymers that can lead to applications in a variety of fields are reviewed, including: materials—in which processability and self-healing properties are of interest; biomedicine— in which the concerns are dynamic functionality and biodegradability; and hierarchical assembly and electronic systems—with an interest in unidirectionality of charge flow.
Abstract: Supramolecular polymers can be random and entangled coils with the mechanical properties of plastics and elastomers, but with great capacity for processability, recycling, and self-healing due to their reversible monomer-to-polymer transitions. At the other extreme, supramolecular polymers can be formed by self-assembly among designed subunits to yield shape-persistent and highly ordered filaments. The use of strong and directional interactions among molecular subunits can achieve not only rich dynamic behavior but also high degrees of internal order that are not known in ordinary polymers. They can resemble, for example, the ordered and dynamic one-dimensional supramolecular assemblies of the cell cytoskeleton and possess useful biological and electronic functions.

2,777 citations

Journal ArticleDOI
02 May 2012
TL;DR: The physical mechanism, material properties, and electrical characteristics of a variety of binary metal-oxide resistive switching random access memory (RRAM) are discussed, with a focus on the use of RRAM for nonvolatile memory application.
Abstract: In this paper, recent progress of binary metal-oxide resistive switching random access memory (RRAM) is reviewed. The physical mechanism, material properties, and electrical characteristics of a variety of binary metal-oxide RRAM are discussed, with a focus on the use of RRAM for nonvolatile memory application. A review of recent development of large-scale RRAM arrays is given. Issues such as uniformity, endurance, retention, multibit operation, and scaling trends are discussed.

2,295 citations

Journal ArticleDOI
TL;DR: In this paper, the open literature concerning chemical and mechanistic aspects of the selective catalytic reduction of NO by ammonia (SCR process) on metal oxide catalysts is reviewed, and the results of spectroscopic studies of the adsorbed surface species, adsorption-desorption measurements, flow reactor and kinetic experiments are analyzed.
Abstract: The open literature concerning chemical and mechanistic aspects of the selective catalytic reduction of NO by ammonia (SCR process) on metal oxide catalysts is reviewed. Catalytic systems based on supported V2O5 (including the industrial TiO2-supported V2O5–WO3 and/or V2O5–MoO3 catalysts) and catalysts containing Fe2O3, CuO, MnOx and CrOx are considered. The results of spectroscopic studies of the adsorbed surface species, adsorption–desorption measurements, flow reactor and kinetic experiments are analyzed. The proposed reaction mechanisms are described and critically discussed. Points of convergence and of disagreement are underlined.

1,946 citations