scispace - formally typeset
Search or ask a question
Author

Tomoteru Fukumura

Bio: Tomoteru Fukumura is an academic researcher from Tohoku University. The author has contributed to research in topics: Thin film & Ferromagnetism. The author has an hindex of 43, co-authored 224 publications receiving 10362 citations. Previous affiliations of Tomoteru Fukumura include University of Tokyo & Rohm.


Papers
More filters
Journal ArticleDOI
02 Feb 2001-Science
TL;DR: The observation of transparent ferromagnetism in cobalt-doped anatase thin films with the concentration of cobalt between 0 and 8% is reported, indicating the existence of ferromagnetic long-range ordering.
Abstract: Dilute magnetic semiconductors and wide gap oxide semiconductors are appealing materials for magnetooptical devices. From a combinatorial screening approach looking at the solid solubility of transition metals in titanium dioxides and of their magnetic properties, we report on the observation of transparent ferromagnetism in cobalt-doped anatase thin films with the concentration of cobalt between 0 and 8%. Magnetic microscopy images reveal a magnetic domain structure in the films, indicating the existence of ferromagnetic long-range ordering. The materials remain ferromagnetic above room temperature with a magnetic moment of 0.32 Bohr magnetons per cobalt atom. The film is conductive and exhibits a positive magnetoresistance of 60% at 2 kelvin.

2,302 citations

Journal ArticleDOI
TL;DR: In this article, the lattice constants of both a and c axes of wurtzite Zn1−xMnxO films (x < 0.35) increase and the band gap expands although considerable in-gap absorption develops.
Abstract: Epitaxial thin films of an oxide-diluted magnetic semiconductor, Mn-doped ZnO, were fabricated by pulsed-laser deposition technique. Solubility of Mn into ZnO exceeds thermal equilibrium limit as a result of nonequilibrium film growth process. As Mn content is increased, the lattice constants of both a and c axes of wurtzite Zn1−xMnxO films (x<0.35) increase and the band gap expands although considerable in-gap absorption develops. Itinerant electrons over 1019 cm−3 can be doped into the Zn1−xMnxO films by Al doping, in contrast to low carrier density in the other II–VI diluted magnetic semiconductors. The temperature dependence of the resistivity is almost metallic and considerable magnetoresistance is observed at low temperatures.

657 citations

Journal ArticleDOI
TL;DR: In this paper, the magnetic properties of an oxide-diluted magnetic semiconductor (DMS), Zn0.64Mn 0.36O, were investigated and the temperature dependence of the magnetization showed a spin-glass behavior with the large magnitude of the Curie-Weiss temperature.
Abstract: We report on the magnetic properties of an oxide-diluted magnetic semiconductor (DMS), Zn0.64Mn0.36O. The temperature dependence of the magnetization shows a spin-glass behavior with the large magnitude of the Curie–Weiss temperature, corresponding to a stronger antiferromagnetic exchange coupling than other II–VI DMSs. The small effective Mn moment (x∼0.02) under high field also represents a strong antiferromagnetic exchange coupling in this compound.

654 citations

Journal ArticleDOI
TL;DR: Combinatorial laser molecular-beam epitaxy method was employed to fabricate epitaxial ZnO thin films doped with all the 3d transition metal (TM) ions in a high throughput fashion as discussed by the authors.
Abstract: Combinatorial laser molecular-beam epitaxy method was employed to fabricate epitaxial ZnO thin films doped with all the 3d transition metal (TM) ions in a high throughput fashion The solubility behavior of TM ions was discussed from the viewpoints of the ionic radius and valence state The magneto-optical responses coincident with absorption spectra were observed for Mn- and Co-doped samples Cathodoluminescence spectra were studied for Cr-, Mn-, Fe-, and Co-doped samples, among which Cr-doped ZnO showed two sharp peaks at 297 eV and 371 eV, respectively, at the expense of the exciton emission peak of pure ZnO at 325 eV Different magnetoresistance behavior was observed for the samples codoped with n-type carriers Ferromagnetism was not observed for Cr- to Cu-doped samples down to 3 K

587 citations

Journal ArticleDOI
27 May 2011-Science
TL;DR: Electric field–induced ferromagnetism at room temperature in a magnetic oxide semiconductor, (Ti,Co)O2, is demonstrated by means of electric double-layer gating with high-density electron accumulation and revealing the considerable role of electron carriers in high-temperature ferromagnetic state and demonstrating a route to room-tem temperature semiconductor spintronics.
Abstract: The electric field effect in ferromagnetic semiconductors enables switching of the magnetization, which is a key technology for spintronic applications. We demonstrated electric field–induced ferromagnetism at room temperature in a magnetic oxide semiconductor, (Ti,Co)O2, by means of electric double-layer gating with high-density electron accumulation (>1014 per square centimeter). By applying a gate voltage of a few volts, a low-carrier paramagnetic state was transformed into a high-carrier ferromagnetic state, thereby revealing the considerable role of electron carriers in high-temperature ferromagnetism and demonstrating a route to room-temperature semiconductor spintronics.

438 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature.
Abstract: The semiconductor ZnO has gained substantial interest in the research community in part because of its large exciton binding energy (60meV) which could lead to lasing action based on exciton recombination even above room temperature. Even though research focusing on ZnO goes back many decades, the renewed interest is fueled by availability of high-quality substrates and reports of p-type conduction and ferromagnetic behavior when doped with transitions metals, both of which remain controversial. It is this renewed interest in ZnO which forms the basis of this review. As mentioned already, ZnO is not new to the semiconductor field, with studies of its lattice parameter dating back to 1935 by Bunn [Proc. Phys. Soc. London 47, 836 (1935)], studies of its vibrational properties with Raman scattering in 1966 by Damen et al. [Phys. Rev. 142, 570 (1966)], detailed optical studies in 1954 by Mollwo [Z. Angew. Phys. 6, 257 (1954)], and its growth by chemical-vapor transport in 1970 by Galli and Coker [Appl. Phys. ...

10,260 citations

Journal ArticleDOI
16 Nov 2001-Science
TL;DR: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron, which has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices.
Abstract: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron. Either adding the spin degree of freedom to conventional charge-based electronic devices or using the spin alone has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices. To successfully incorporate spins into existing semiconductor technology, one has to resolve technical issues such as efficient injection, transport, control and manipulation, and detection of spin polarization as well as spin-polarized currents. Recent advances in new materials engineering hold the promise of realizing spintronic devices in the near future. We review the current state of the spin-based devices, efforts in new materials fabrication, issues in spin transport, and optical spin manipulation.

9,917 citations

Journal ArticleDOI
Ulrike Diebold1
TL;DR: Titanium dioxide is the most investigated single-crystalline system in the surface science of metal oxides, and the literature on rutile (1.1) and anatase surfaces is reviewed in this paper.

7,056 citations

Journal ArticleDOI
TL;DR: In this paper, photo-induced superhydrophilicity was used on the surface of a wide-band gap semiconductor like titanium dioxide (TiO 2 ) for photocatalytic activity towards environmentally hazardous compounds.

4,241 citations

Journal ArticleDOI
TL;DR: In this paper, a review of experimental and theoretical studies of anomalous Hall effect (AHE), focusing on recent developments that have provided a more complete framework for understanding this subtle phenomenon and have, in many instances, replaced controversy by clarity.
Abstract: We present a review of experimental and theoretical studies of the anomalous Hall effect (AHE), focusing on recent developments that have provided a more complete framework for understanding this subtle phenomenon and have, in many instances, replaced controversy by clarity. Synergy between experimental and theoretical work, both playing a crucial role, has been at the heart of these advances. On the theoretical front, the adoption of Berry-phase concepts has established a link between the AHE and the topological nature of the Hall currents which originate from spin-orbit coupling. On the experimental front, new experimental studies of the AHE in transition metals, transition-metal oxides, spinels, pyrochlores, and metallic dilute magnetic semiconductors, have more clearly established systematic trends. These two developments in concert with first-principles electronic structure calculations, strongly favor the dominance of an intrinsic Berry-phase-related AHE mechanism in metallic ferromagnets with moderate conductivity. The intrinsic AHE can be expressed in terms of Berry-phase curvatures and it is therefore an intrinsic quantum mechanical property of a perfect cyrstal. An extrinsic mechanism, skew scattering from disorder, tends to dominate the AHE in highly conductive ferromagnets. We review the full modern semiclassical treatment of the AHE together with the more rigorous quantum-mechanical treatments based on the Kubo and Keldysh formalisms, taking into account multiband effects, and demonstrate the equivalence of all three linear response theories in the metallic regime. Finally we discuss outstanding issues and avenues for future investigation.

2,970 citations