scispace - formally typeset
Search or ask a question
Author

Tomoya Tatsuno

Bio: Tomoya Tatsuno is an academic researcher from University of Maryland, College Park. The author has contributed to research in topics: Gyrokinetics & Turbulence. The author has an hindex of 20, co-authored 61 publications receiving 2636 citations. Previous affiliations of Tomoya Tatsuno include Kyoto University & University of Tokyo.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a theoretical framework for understanding plasma turbulence in astrophysical plasmas is presented, motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks.
Abstract: This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulent motions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the inertial range above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-field-strength fluctuations. The former are governed by the reduced magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations become the slow and entropy modes of the conventional MHD). In the dissipation range below ion gyroscale, there are again two cascades: the kinetic-Alfven-wave (KAW) cascade governed by two fluid-like electron reduced magnetohydrodynamic (ERMHD) equations and a passive cascade of ion entropy fluctuations both in space and velocity. The latter cascade brings the energy of the inertial-range fluctuations that was Landau-damped at the ion gyroscale to collisional scales in the phase space and leads to ion heating. The KAW energy is similarly damped at the electron gyroscale and converted into electron heat. Kolmogorov-style scaling relations are derived for all of these cascades. The relationship between the theoretical models proposed in this paper and astrophysical applications and observations is discussed in detail.

853 citations

Journal ArticleDOI
TL;DR: The first ab initio, fully electromagnetic, kinetic simulations of magnetized turbulence in a homogeneous, weakly collisional plasma at the scale of the ion Larmor radius (ion gyroscale) support the hypothesis that the frequencies of turbulent fluctuations in the solar wind remain well below the ion cyclotron frequency.
Abstract: This Letter presents the first ab initio, fully electromagnetic, kinetic simulations of magnetized turbulence in a homogeneous, weakly collisional plasma at the scale of the ion Larmor radius (ion gyroscale). Magnetic- and electric-field energy spectra show a break at the ion gyroscale; the spectral slopes are consistent with scaling predictions for critically balanced turbulence of Alfven waves above the ion gyroscale (spectral index -5/3) and of kinetic Alfven waves below the ion gyroscale (spectral indices of -7/3 for magnetic and -1/3 for electric fluctuations). This behavior is also qualitatively consistent with in situ measurements of turbulence in the solar wind. Our findings support the hypothesis that the frequencies of turbulent fluctuations in the solar wind remain well below the ion cyclotron frequency both above and below the ion gyroscale.

354 citations

Journal ArticleDOI
TL;DR: A three-dimensional, nonlinear gyrokinetic simulation of plasma turbulence resolving scales from the ion to electron gyroradius with a realistic mass ratio is presented, where all damping is provided by resolved physical mechanisms.
Abstract: A three-dimensional, nonlinear gyrokinetic simulation of plasma turbulence resolving scales from the ion to electron gyroradius with a realistic mass ratio is presented, where all damping is provided by resolved physical mechanisms. The resulting energy spectra are quantitatively consistent with a magnetic power spectrum scaling of ${k}^{\ensuremath{-}2.8}$ as observed in in situ spacecraft measurements of the ``dissipation range'' of solar wind turbulence. Despite the strongly nonlinear nature of the turbulence, the linear kinetic Alfv\'en wave mode quantitatively describes the polarization of the turbulent fluctuations. The collisional ion heating is measured at subion-Larmor radius scales, which provides evidence of the ion entropy cascade in an electromagnetic turbulence simulation.

286 citations

Journal ArticleDOI
TL;DR: The results are important because they identify what is probably a universal Kolmogorov-like regime for kinetic turbulence; and because any physical process that produces fluctuations of the gyrophase-independent part of the distribution function may, via the entropy cascade, result in turbulent heating at a rate that increases with the fluctuation amplitude, but is independent of the collision frequency.
Abstract: Electrostatic turbulence in weakly collisional, magnetized plasma can be interpreted as a cascade of entropy in phase space, which is proposed as a universal mechanism for dissipation of energy in magnetized plasma turbulence. When the nonlinear decorrelation time at the scale of the thermal Larmor radius is shorter than the collision time, a broad spectrum of fluctuations at sub-Larmor scales is numerically found in velocity and position space, with theoretically predicted scalings. The results are important because they identify what is probably a universal Kolmogorov-like regime for kinetic turbulence; and because any physical process that produces fluctuations of the gyrophase-independent part of the distribution function may, via the entropy cascade, result in turbulent heating at a rate that increases with the fluctuation amplitude, but is independent of the collision frequency.

160 citations

Journal ArticleDOI
TL;DR: In this article, a conceptual framework for understanding kinetic plasma turbulence as a generalized form of energy cascade in phase space is presented, emphasizing that conversion of turbulent energy into thermodynamic heat is only achievable in the presence of some (however small) degree of collisionality.
Abstract: This paper describes a conceptual framework for understanding kinetic plasma turbulence as a generalized form of energy cascade in phase space. It is emphasized that conversion of turbulent energy into thermodynamic heat is only achievable in the presence of some (however small) degree of collisionality. The smallness of the collision rate is compensated for by the emergence of a small-scale structure in the velocity space. For gyrokinetic turbulence, a nonlinear perpendicular phase-mixing mechanism is identified and described as a turbulent cascade of entropy fluctuations simultaneously occurring at spatial scales smaller than the ion gyroscale and in velocity space. Scaling relations for the resulting fluctuation spectra are derived. An estimate for the collisional cutoff is provided. The importance of adequately modelling and resolving collisions in gyrokinetic simulations is briefly discussed, as well as the relevance of these results to understanding the dissipation-range turbulence in the solar wind and the electrostatic microturbulence in fusion plasmas.

149 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe new optically thin solutions for rotating accretion flows around black holes and neutron stars, which are advection dominated, so that most of the viscously dissipated energy is advected radially with the flow.
Abstract: We describe new optically thin solutions for rotating accretion flows around black holes and neutron stars. These solutions are advection dominated, so that most of the viscously dissipated energy is advected radially with the flow. We model the accreting gas as a two temperature plasma and include cooling by bremsstrahlung, synchrotron, and Comptonization. We obtain electron temperatures $T_e\sim 10^{8.5}-10^{10}$K. The new solutions are present only for mass accretion rates $\dot M$ less than a critical rate $\dot M_{crit}$ which we calculate as a function of radius $R$ and viscosity parameter $\alpha$. For $\dot M<\dot M_{crit}$ we show that there are three equilibrium branches of solutions. One of the branches corresponds to a cool optically thick flow which is the well-known thin disk solution of Shakura \& Sunyaev (1973). Another branch corresponds to a hot optically thin flow, discovered originally by Shapiro, Lightman \& Eardley (1976, SLE). This solution is thermally unstable. The third branch corresponds to our new advection-dominated solution. This solution is hotter and more optically thin than the SLE solution, but is viscously and thermally stable. It is related to the ion torus model of Rees et al. (1982) and may potentially explain the hard X-ray and $\gamma$-ray emission from X-ray binaries and active galactic nuclei.

1,088 citations

Journal ArticleDOI
TL;DR: In this paper, a theoretical framework for understanding plasma turbulence in astrophysical plasmas is presented, motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks.
Abstract: This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulent motions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the inertial range above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-field-strength fluctuations. The former are governed by the reduced magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations become the slow and entropy modes of the conventional MHD). In the dissipation range below ion gyroscale, there are again two cascades: the kinetic-Alfven-wave (KAW) cascade governed by two fluid-like electron reduced magnetohydrodynamic (ERMHD) equations and a passive cascade of ion entropy fluctuations both in space and velocity. The latter cascade brings the energy of the inertial-range fluctuations that was Landau-damped at the ion gyroscale to collisional scales in the phase space and leads to ion heating. The KAW energy is similarly damped at the electron gyroscale and converted into electron heat. Kolmogorov-style scaling relations are derived for all of these cascades. The relationship between the theoretical models proposed in this paper and astrophysical applications and observations is discussed in detail.

853 citations

01 Oct 1981
TL;DR: A nonlinear gyrokinetic formalism for low-frequency (less than the cyclotron frequency) microscopic electromagnetic perturbations in general magnetic field configurations is developed in this paper.
Abstract: A nonlinear gyrokinetic formalism for low‐frequency (less than the cyclotron frequency) microscopic electromagnetic perturbations in general magnetic field configurations is developed. The nonlinear equations thus derived are valid in the strong‐turbulence regime and contain effects due to finite Larmor radius, plasma inhomogeneities, and magnetic field geometries. The specific case of axisymmetric tokamaks is then considered and a model nonlinear equation is derived for electrostatic drift waves. Also, applying the formalism to the shear Alfven wave heating scheme, it is found that nonlinear ion Landau damping of kinetic shear‐Alfven waves is modified, both qualitatively and quantitatively, by the diamagnetic drift effects. In particular, wave energy is found to cascade in wavenumber instead of frequency.

587 citations

Journal ArticleDOI
TL;DR: The first direct determination of the dissipation range of magnetofluid turbulence in the solar wind at the electron scales is reported and a remarkable agreement with theoretical predictions of a quasi-two-dimensional cascade into Kinetic Alfvén Waves (KAW).
Abstract: We report the first direct determination of the dissipation range of magnetofluid turbulence in the solar wind at the electron scales. Combining high resolution magnetic and electric field data of the Cluster spacecraft, we computed the spectrum of turbulence and found two distinct breakpoints in the magnetic spectrum at 0.4 and 35 Hz, which correspond, respectively, to the Doppler-shifted proton and electron gyroscales, ${f}_{{\ensuremath{\rho}}_{p}}$ and ${f}_{{\ensuremath{\rho}}_{e}}$. Below ${f}_{{\ensuremath{\rho}}_{p}}$, the spectrum follows a Kolmogorov scaling ${f}^{\ensuremath{-}1.62}$, typical of spectra observed at 1 AU. Above ${f}_{{\ensuremath{\rho}}_{p}}$, a second inertial range is formed with a scaling ${f}^{\ensuremath{-}2.3}$ down to ${f}_{{\ensuremath{\rho}}_{e}}$. Above ${f}_{{\ensuremath{\rho}}_{e}}$, the spectrum has a steeper power law $\ensuremath{\sim}{f}^{\ensuremath{-}4.1}$ down to the noise level of the instrument. We interpret this as the dissipation range and show a remarkable agreement with theoretical predictions of a quasi-two-dimensional cascade into Kinetic Alfv\'en Waves (KAW).

580 citations