scispace - formally typeset
Search or ask a question
Author

Tomoyuki Inoue

Other affiliations: Kyoto University, University of Toronto, Topcon Corporation  ...read more
Bio: Tomoyuki Inoue is an academic researcher from Ehime University. The author has contributed to research in topics: Keratitis & Retina. The author has an hindex of 27, co-authored 89 publications receiving 3036 citations. Previous affiliations of Tomoyuki Inoue include Kyoto University & University of Toronto.


Papers
More filters
Journal ArticleDOI
TL;DR: The transplanted dissociated human retinal sphere cells, containing both stem cells and progenitors, into the eyes of postnatal day 1 NOD/SCID mice and embryonic chick eyes were able to survive, migrate, integrate, and differentiate into the neural retina, especially as photoreceptors.
Abstract: This study identifies and characterizes retinal stem cells (RSCs) in early postnatal to seventh-decade human eyes. Different subregions of human eyes were dissociated and cultured by using a clonal sphere-forming assay. The stem cells were derived only from the pars plicata and pars plana of the retinal ciliary margin, at a frequency of ≈1:500. To test for long-term self-renewal, both the sphere assay and monolayer passaging were used. By using the single sphere passaging assay, primary spheres were dissociated and replated, and individual spheres demonstrated 100% self-renewal, with single spheres giving rise to one or more new spheres in each subsequent passage. The clonal retinal spheres were plated under differentiation conditions to assay the differentiation potential of their progeny. The spheres were produced all of the different retinal cell types, demonstrating multipotentiality. Therefore, the human eye contains a small population of cells (≈10,000 cells per eye) that have retinal stem-cell characteristics (proliferation, self-renewal, and multipotentiality). To test the in vivo potential of the stem cells and their progeny, we transplanted dissociated human retinal sphere cells, containing both stem cells and progenitors, into the eyes of postnatal day 1 NOD/SCID mice and embryonic chick eyes. The progeny of the RSCs were able to survive, migrate, integrate, and differentiate into the neural retina, especially as photoreceptors. Their facile isolation, integration, and differentiation suggest that human RSCs eventually may be valuable in treating human retinal diseases.

404 citations

Journal ArticleDOI
TL;DR: It is found that in Mash1-Math3 double-mutant retina, which exhibits a complete loss of bipolar cells, Chx10 expression did not disappear but remained in Müller glial cells, suggesting that Chx8 expression per se is compatible with gliogenesis, and the bHLH genes may be involved in neuronal subtype specification.
Abstract: Previous analysis of mutant mice has revealed that the bHLH genes Mash1 and Math3, and the homeobox gene Chx10 are essential for generation of bipolar cells, the interneurons present in the inner nuclear layer of the retina. Thus, a combination of the bHLH and homeobox genes should be important for bipolar cell genesis, but the exact functions of each gene remain largely unknown. We have found that in Mash1-Math3 double-mutant retina, which exhibits a complete loss of bipolar cells, Chx10 expression did not disappear but remained in Muller glial cells, suggesting that Chx10 expression per se is compatible with gliogenesis. In agreement with this, misexpression of Chx10 alone with retrovirus in the retinal explant cultures induced generation of the inner nuclear layer cells, including Muller glia, but few of them were mature bipolar cells. Misexpression of Mash1 or Math3 alone did not promote bipolar cell genesis either, but inhibited Muller gliogenesis. In contrast, misexpression of Mash1 or Math3 together with Chx10 increased the population of mature bipolar cells and decreased that of Muller glia. Thus, the homeobox gene provides the inner nuclear layer-specific identity while the bHLH genes regulate the neuronal versus glial fate determination, and these two classes of genes together specify the bipolar cell fate. Moreover, Mash1 and Math3 promoted the bipolar cell fate, but not the other inner nuclear layer-specific neuronal subtypes in the presence of Chx10, raising the possibility that the bHLH genes may be involved in neuronal subtype specification, in addition to simply making the neuronal versus glial fate choice.

265 citations

Journal ArticleDOI
TL;DR: It is found that, in Math3-NeuroD double-mutant retina, amacrine cells are completely missing, while ganglion and Müller glial cells are increased in number, and that co-expression of the basic helix-loop-helix and homeobox genes is required for specification of the correct neuronal subtype.
Abstract: The basic helix-loop-helix genes Math3 and NeuroD are expressed by differentiating amacrine cells, retinal interneurons. Previous studies have demonstrated that a normal number of amacrine cells is generated in mice lacking either Math3 or NeuroD. We have found that, in Math3-NeuroD double-mutant retina, amacrine cells are completely missing, while ganglion and Muller glial cells are increased in number. In the double-mutant retina, the cells that would normally differentiate into amacrine cells did not die but adopted the ganglion and glial cell fates. Misexpression studies using the developing retinal explant cultures showed that, although Math3 and NeuroD alone only promoted rod genesis, they significantly increased the population of amacrine cells when the homeobox gene Pax6 or Six3 was co-expressed. These results indicate that Math3 and NeuroD are essential, but not sufficient, for amacrine cell genesis, and that co-expression of the basic helix-loop-helix and homeobox genes is required for specification of the correct neuronal subtype.

260 citations

Journal ArticleDOI
TL;DR: It is shown that iris tissue in the adult rat eye, which is embryonically related to the neural retina, can generate cells expressing differentiated neuronal antigens, and the Crx gene transfer induced the specific antigen for rod photoreceptors in the iris-derived cells.
Abstract: We show that iris tissue in the adult rat eye, which is embryonically related to the neural retina, can generate cells expressing differentiated neuronal antigens In addition, the Crx gene transfer induced the specific antigens for rod photoreceptors in the iris-derived cells, which was not seen in the adult hippocampus-derived neural stem cells Our findings demonstrate a remarkable plasticity of adult iris tissue with potential clinical applications, as autologous iris tissue can be feasibly obtained with peripheral iridectomy

167 citations

Journal ArticleDOI
TL;DR: Retinal precursor cells give rise to six types of neurons and one type of glial cell during development, and this process is controlled by multiple basic helix-loop-helix (bHLH) genes, which cross-regulate each other, cooperatively specify neuronal subtypes, and regulate neuronal survival in the developing retina.

155 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Parallel studies in Drosophila and vertebrates have revealed that proneural genes are key regulators of neurogenesis, coordinating the acquisition of a generic neuronal fate and of specific subtype identities that are appropriate for the location and time of neuronal generation.
Abstract: Certain morphological, physiological and molecular characteristics are shared by all neurons. However, despite these similarities, neurons constitute the most diverse cell population of any organism. Recently, considerable attention has been focused on identifying the molecular mechanisms that underlie this cellular diversity. Parallel studies in Drosophila and vertebrates have revealed that proneural genes are key regulators of neurogenesis, coordinating the acquisition of a generic neuronal fate and of specific subtype identities that are appropriate for the location and time of neuronal generation. These studies reveal that, in spite of differences between invertebrate and vertebrate neural lineages, Drosophila and vertebrate proneural genes have remarkably similar roles.

1,450 citations

Journal ArticleDOI
TL;DR: The identification of the HERP family as a Notch effector that cooperates with HES/E(spl) family has opened a new avenue to the authors' understanding of the Notch signaling pathway.
Abstract: Notch signaling dictates cell fate and critically influences cell proliferation, differentiation, and apoptosis in metazoans. Multiple factors at each step-ligands, receptors, signal transducers and effectors-play critical roles in executing the pleiotropic effects of Notch signaling. Ligand-binding results in proteolytic cleavage of Notch receptors to release the signal-transducing Notch intracellular domain (NICD). NICD migrates into the nucleus and associates with the nuclear proteins of the RBP-Jkappa family (also known as CSL or CBF1/Su(H)/Lag-1). RBP-Jkappa, when complexed with NICD, acts as a transcriptional activator, and the RBP-Jkappa-NICD complex activates expression of primary target genes of Notch signaling such as the HES and enhancer of split [E(spl)] families. HES/E(spl) is a basic helix-loop-helix (bHLH) type of transcriptional repressor, and suppresses expression of downstream target genes such as tissue-specific transcriptional activators. Thus, HES/E(spl) directly affects cell fate decisions as a primary Notch effector. HES/E(spl) had been the only known effector of Notch signaling until a recent discovery of a related but distinct bHLH protein family, termed HERP (HES-related repressor protein, also called Hey/Hesr/HRT/CHF/gridlock). In this review, we summarize the recent data supporting the idea of HERP being a new Notch effector, and provide an overview of the similarities and differences between HES and HERP in their biochemical properties as well as their tissue distribution. One key observation derived from identification of HERP is that HES and HERP form a heterodimer and cooperate for transcriptional repression. The identification of the HERP family as a Notch effector that cooperates with HES/E(spl) family has opened a new avenue to our understanding of the Notch signaling pathway.

1,225 citations

Journal ArticleDOI
TL;DR: The role of the Tear Film and Ocular Surface Society (TFOS) Dry Eye Workshop (DEWS) II Diagnostic Methodology Subcommittee was to identify tests used to diagnose and monitor dry eye disease (DED) to identify those most appropriate to fulfil the definition of DED and its sub-classifications.
Abstract: The role of the Tear Film and Ocular Surface Society (TFOS) Dry Eye Workshop (DEWS) II Diagnostic Methodology Subcommittee was 1) to identify tests used to diagnose and monitor dry eye disease (DED), 2) to identify those most appropriate to fulfil the definition of DED and its sub-classifications, 3) to propose the most appropriate order and technique to conduct these tests in a clinical setting, and 4) to provide a differential diagnosis for DED and distinguish conditions where DED is a comorbidity. Prior to diagnosis, it is important to exclude conditions that can mimic DED with the aid of triaging questions. Symptom screening with the DEQ-5 or OSDI confirms that a patient might have DED and triggers the conduct of diagnostic tests of (ideally non-invasive) breakup time, osmolarity and ocular surface staining with fluorescein and lissamine green (observing the cornea, conjunctiva and eyelid margin). Meibomian gland dysfunction, lipid thickness/dynamics and tear volume assessment and their severity allow sub-classification of DED (as predominantly evaporative or aqueous deficient) which informs the management of DED. Videos of these diagnostic and sub-classification techniques are available on the TFOS website. It is envisaged that the identification of the key tests to diagnose and monitor DED and its sub-classifications will inform future epidemiological studies and management clinical trials, improving comparability, and enabling identification of the sub-classification of DED in which different management strategies are most efficacious.

1,152 citations

Journal ArticleDOI
05 Apr 2002-Cell
TL;DR: The results suggest that in the spinal cord, Olig and proneural genes comprise a combinatorial code for the specification of neurons, astrocytes, and oligodendroCytes, the three fundamental cell types of the central nervous system.

1,015 citations

Journal ArticleDOI
TL;DR: A rapid and convenient electroporation method for both gain- and loss-of-function studies in vivo and in vitro in the rodent retina is reported, which led to photoreceptor phenotypes similar to those of the corresponding knockout mice.
Abstract: The large number of candidate genes made available by comprehensive genome analysis requires that relatively rapid techniques for the study of function be developed. Here, we report a rapid and convenient electroporation method for both gain- and loss-of-function studies in vivo and in vitro in the rodent retina. Plasmid DNA directly injected into the subretinal space of neonatal rodent pups was taken up by a significant fraction of exposed cells after several pulses of high voltage. With this technique, GFP expression vectors were efficiently transfected into retinal cells with little damage to the operated pups. Transfected GFP allowed clear visualization of cell morphologies, and the expression persisted for at least 50 days. DNA-based RNA interference vectors directed against two transcription factors important in photoreceptor development led to photoreceptor phenotypes similar to those of the corresponding knockout mice. Reporter constructs carrying retinal cell type-specific promoters were readily introduced into the retina in vivo, where they exhibited the appropriate expression patterns. Plasmid DNA was also efficiently transfected into retinal explants in vitro by high-voltage pulses.

970 citations