scispace - formally typeset
Search or ask a question
Author

Tong Lu

Bio: Tong Lu is an academic researcher from Nanjing University. The author has contributed to research in topics: Pixel & Feature extraction. The author has an hindex of 25, co-authored 230 publications receiving 2535 citations.


Papers
More filters
Posted Content
TL;DR: Huang et al. as discussed by the authors proposed Pyramid Vision Transformer (PVT), which is a simple backbone network useful for many dense prediction tasks without convolutions, and achieved state-of-the-art performance on the COCO dataset.
Abstract: Although using convolutional neural networks (CNNs) as backbones achieves great successes in computer vision, this work investigates a simple backbone network useful for many dense prediction tasks without convolutions. Unlike the recently-proposed Transformer model (e.g., ViT) that is specially designed for image classification, we propose Pyramid Vision Transformer~(PVT), which overcomes the difficulties of porting Transformer to various dense prediction tasks. PVT has several merits compared to prior arts. (1) Different from ViT that typically has low-resolution outputs and high computational and memory cost, PVT can be not only trained on dense partitions of the image to achieve high output resolution, which is important for dense predictions but also using a progressive shrinking pyramid to reduce computations of large feature maps. (2) PVT inherits the advantages from both CNN and Transformer, making it a unified backbone in various vision tasks without convolutions by simply replacing CNN backbones. (3) We validate PVT by conducting extensive experiments, showing that it boosts the performance of many downstream tasks, e.g., object detection, semantic, and instance segmentation. For example, with a comparable number of parameters, RetinaNet+PVT achieves 40.4 AP on the COCO dataset, surpassing RetinNet+ResNet50 (36.3 AP) by 4.1 absolute AP. We hope PVT could serve as an alternative and useful backbone for pixel-level predictions and facilitate future researches. Code is available at this https URL.

845 citations

Proceedings ArticleDOI
01 Jun 2019
TL;DR: A novel Progressive Scale Expansion Network (PSENet) is proposed, which can precisely detect text instances with arbitrary shapes and is effective to split the close text instances, making it easier to use segmentation-based methods to detect arbitrary-shaped text instances.
Abstract: Scene text detection has witnessed rapid progress especially with the recent development of convolutional neural networks. However, there still exists two challenges which prevent the algorithm into industry applications. On the one hand, most of the state-of-art algorithms require quadrangle bounding box which is in-accurate to locate the texts with arbitrary shape. On the other hand, two text instances which are close to each other may lead to a false detection which covers both instances. Traditionally, the segmentation-based approach can relieve the first problem but usually fail to solve the second challenge. To address these two challenges, in this paper, we propose a novel Progressive Scale Expansion Network (PSENet), which can precisely detect text instances with arbitrary shapes. More specifically, PSENet generates the different scale of kernels for each text instance, and gradually expands the minimal scale kernel to the text instance with the complete shape. Due to the fact that there are large geometrical margins among the minimal scale kernels, our method is effective to split the close text instances, making it easier to use segmentation-based methods to detect arbitrary-shaped text instances. Extensive experiments on CTW1500, Total-Text, ICDAR 2015 and ICDAR 2017 MLT validate the effectiveness of PSENet. Notably, on CTW1500, a dataset full of long curve texts, PSENet achieves a F-measure of 74.3% at 27 FPS, and our best F-measure (82.2%) outperforms state-of-art algorithms by 6.6%. The code will be released in the future.

501 citations

Proceedings ArticleDOI
01 Oct 2019
TL;DR: Zhang et al. as discussed by the authors proposed an efficient and accurate arbitrary-shaped text detector, termed Pixel Aggregation Network (PAN), which is equipped with a low computational-cost segmentation head and a learnable postprocessing.
Abstract: Scene text detection, an important step of scene text reading systems, has witnessed rapid development with convolutional neural networks. Nonetheless, two main challenges still exist and hamper its deployment to real-world applications. The first problem is the trade-off between speed and accuracy. The second one is to model the arbitrary-shaped text instance. Recently, some methods have been proposed to tackle arbitrary-shaped text detection, but they rarely take the speed of the entire pipeline into consideration, which may fall short in practical applications. In this paper, we propose an efficient and accurate arbitrary-shaped text detector, termed Pixel Aggregation Network (PAN), which is equipped with a low computational-cost segmentation head and a learnable post-processing. More specifically, the segmentation head is made up of Feature Pyramid Enhancement Module (FPEM) and Feature Fusion Module (FFM). FPEM is a cascadable U-shaped module, which can introduce multi-level information to guide the better segmentation. FFM can gather the features given by the FPEMs of different depths into a final feature for segmentation. The learnable post-processing is implemented by Pixel Aggregation (PA), which can precisely aggregate text pixels by predicted similarity vectors. Experiments on several standard benchmarks validate the superiority of the proposed PAN. It is worth noting that our method can achieve a competitive F-measure of 79.9% at 84.2 FPS on CTW1500.

218 citations

Journal ArticleDOI
03 Apr 2020
TL;DR: The proposed TEINet can achieve a good recognition accuracy on these datasets but still preserve a high efficiency, and is able to capture temporal structure flexibly and effectively, but also efficient for model inference.
Abstract: Efficiency is an important issue in designing video architectures for action recognition. 3D CNNs have witnessed remarkable progress in action recognition from videos. However, compared with their 2D counterparts, 3D convolutions often introduce a large amount of parameters and cause high computational cost. To relieve this problem, we propose an efficient temporal module, termed as Temporal Enhancement-and-Interaction (TEI Module), which could be plugged into the existing 2D CNNs (denoted by TEINet). The TEI module presents a different paradigm to learn temporal features by decoupling the modeling of channel correlation and temporal interaction. First, it contains a Motion Enhanced Module (MEM) which is to enhance the motion-related features while suppress irrelevant information (e.g., background). Then, it introduces a Temporal Interaction Module (TIM) which supplements the temporal contextual information in a channel-wise manner. This two-stage modeling scheme is not only able to capture temporal structure flexibly and effectively, but also efficient for model inference. We conduct extensive experiments to verify the effectiveness of TEINet on several benchmarks (e.g., Something-Something V1&V2, Kinetics, UCF101 and HMDB51). Our proposed TEINet can achieve a good recognition accuracy on these datasets but still preserve a high efficiency.

176 citations

Proceedings ArticleDOI
06 Nov 2017
TL;DR: In this paper, the authors pose action localization as a structured prediction over arbitrary-length temporal windows, where each window is scored as the sum of frame-wise classification scores, and use features from a deep Convolutional Neural Network (CNN) to directly optimize for a novel structured objective.
Abstract: We address the problem of temporal action localization in videos. We pose action localization as a structured prediction over arbitrary-length temporal windows, where each window is scored as the sum of frame-wise classification scores. Additionally, our model classifies the start, middle, and end of each action as separate components, allowing our system to explicitly model each actions temporal evolution and take advantage of informative temporal dependencies present in that structure. In this framework, we localize actions by searching for the structured maximal sum, a problem for which we develop a novel, provably-efficient algorithmic solution. The frame-wise classification scores are computed using features from a deep Convolutional Neural Network (CNN), which are trained end-to-end to directly optimize for a novel structured objective. We evaluate our system on the THUMOS 14 action detection benchmark and achieve competitive performance.

169 citations


Cited by
More filters
Posted Content
Ze Liu1, Yutong Lin1, Yue Cao1, Han Hu1, Yixuan Wei1, Zheng Zhang1, Stephen Lin1, Baining Guo1 
TL;DR: Wang et al. as mentioned in this paper proposed a new vision Transformer called Swin Transformer, which is computed with shifted windows to address the differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text.
Abstract: This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation is computed with shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks, including image classification (86.4 top-1 accuracy on ImageNet-1K) and dense prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO test-dev) and semantic segmentation (53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-the-art by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The code and models will be made publicly available at~\url{this https URL}.

3,518 citations

Proceedings ArticleDOI
23 Aug 2015
TL;DR: A new Challenge 4 on Incidental Scene Text has been added to the Challenges on Born-Digital Images, Focused Scene Images and Video Text and tasks assessing End-to-End system performance have been introduced to all Challenges.
Abstract: Results of the ICDAR 2015 Robust Reading Competition are presented. A new Challenge 4 on Incidental Scene Text has been added to the Challenges on Born-Digital Images, Focused Scene Images and Video Text. Challenge 4 is run on a newly acquired dataset of 1,670 images evaluating Text Localisation, Word Recognition and End-to-End pipelines. In addition, the dataset for Challenge 3 on Video Text has been substantially updated with more video sequences and more accurate ground truth data. Finally, tasks assessing End-to-End system performance have been introduced to all Challenges. The competition took place in the first quarter of 2015, and received a total of 44 submissions. Only the tasks newly introduced in 2015 are reported on. The datasets, the ground truth specification and the evaluation protocols are presented together with the results and a brief summary of the participating methods.

1,224 citations

Proceedings ArticleDOI
25 Aug 2013
TL;DR: The datasets and ground truth specification are described, the performance evaluation protocols used are details, and the final results are presented along with a brief summary of the participating methods.
Abstract: This report presents the final results of the ICDAR 2013 Robust Reading Competition. The competition is structured in three Challenges addressing text extraction in different application domains, namely born-digital images, real scene images and real-scene videos. The Challenges are organised around specific tasks covering text localisation, text segmentation and word recognition. The competition took place in the first quarter of 2013, and received a total of 42 submissions over the different tasks offered. This report describes the datasets and ground truth specification, details the performance evaluation protocols used and presents the final results along with a brief summary of the participating methods.

1,191 citations

Posted Content
TL;DR: This work proposes the Learning without Forgetting method, which uses only new task data to train the network while preserving the original capabilities, and performs favorably compared to commonly used feature extraction and fine-tuning adaption techniques.
Abstract: When building a unified vision system or gradually adding new capabilities to a system, the usual assumption is that training data for all tasks is always available. However, as the number of tasks grows, storing and retraining on such data becomes infeasible. A new problem arises where we add new capabilities to a Convolutional Neural Network (CNN), but the training data for its existing capabilities are unavailable. We propose our Learning without Forgetting method, which uses only new task data to train the network while preserving the original capabilities. Our method performs favorably compared to commonly used feature extraction and fine-tuning adaption techniques and performs similarly to multitask learning that uses original task data we assume unavailable. A more surprising observation is that Learning without Forgetting may be able to replace fine-tuning with similar old and new task datasets for improved new task performance.

1,037 citations