scispace - formally typeset
Search or ask a question
Author

Tong Zhang

Bio: Tong Zhang is an academic researcher from Fudan University. The author has contributed to research in topics: Materials science & Superconductivity. The author has an hindex of 43, co-authored 244 publications receiving 8304 citations. Previous affiliations of Tong Zhang include National Institute of Standards and Technology & Tsinghua University.


Papers
More filters
Journal ArticleDOI
TL;DR: It is demonstrated that the superconductivity occurs when the electrons transferred from the oxygen-vacant substrate suppress the otherwise pronounced SDWs in single-layer FeSe, and the phase diagram of FeSe is mapped out as a function of lattice constant, which contains all the essential physics of Fe-HTS.
Abstract: Iron pnictide superconductors represent a suggestive alternative to cuprate superconductors for achieving high transition temperatures. Using in situ angle-resolved photoemission spectroscopy, the electronic properties of FeSe are examined as a function of film thickness, providing valuable insights into the mechanism driving the superconductivity in this material.

590 citations

Journal ArticleDOI
TL;DR: By studying the voltage-dependent standing wave patterns, the energy dispersion E(k) is determined, which confirms the Dirac cone structure of the topological states, and shows that, very different from the conventional surface states, backscattering of theTopological states by nonmagnetic impurities is completely suppressed.
Abstract: We report direct imaging of standing waves of the nontrivial surface states of topological insulator Bi2Te3 using a scanning tunneling microscope. The interference fringes are caused by the scattering of the topological states off Ag impurities and step edges on the Bi2Te3(111) surface. By studying the voltage-dependent standing wave patterns, we determine the energy dispersion E(k), which confirms the Dirac cone structure of the topological states. We further show that, very different from the conventional surface states, backscattering of the topological states by nonmagnetic impurities is completely suppressed. The absence of backscattering is a spectacular manifestation of the time-reversal symmetry, which offers a direct proof of the topological nature of the surface states.

578 citations

Journal Article
TL;DR: In this article, the authors reported direct imaging of standing waves of the nontrivial surface states of the topological insulator Bi2Te3 using a scanning tunneling microscope.
Abstract: We report direct imaging of standing waves of the nontrivial surface states of topological insulator Bi2Te3 using a scanning tunneling microscope. The interference fringes are caused by the scattering of the topological states off Ag impurities and step edges on the Bi2Te3(111) surface. By studying the voltage-dependent standing wave patterns, we determine the energy dispersion E(k), which confirms the Dirac cone structure of the topological states. We further show that, very different from the conventional surface states, backscattering of the topological states by nonmagnetic impurities is completely suppressed. The absence of backscattering is a spectacular manifestation of the time-reversal symmetry, which offers a direct proof of the topological nature of the surface states.

459 citations

Journal ArticleDOI
TL;DR: The epitaxial films of lead and indium represent the thinnest superconductors possible as discussed by the authors, and have been shown to have superconductivity on silicon substrates.
Abstract: There are many two-dimensional superconductors, but only now have monolayers of metallic atoms shown superconductivity. Grown on silicon substrates, epitaxial films of lead and indium represent the thinnest superconductors possible.

450 citations

Journal ArticleDOI
TL;DR: In this paper, the spin density wave (SDW) in FeSe films was investigated and the authors showed that the superconductivity occurs when the electrons transferred from the oxygen-vacant substrate suppress the otherwise most pronounced SDW in single layer FeSe.
Abstract: The record of superconducting transition temperature(Tc) has long been 56K for the iron-based high temperature superconductors(Fe-HTS's). Recently, in single layer FeSe films grown on SrTiO3 substrate, signs for a new 65K Tc record are reported. Here with in-situ photoemission measurements, we substantiate the presence of the spin density wave(SDW) in FeSe films, a key ingredient of Fe-HTS that was missed in FeSe before, which weakens with increased thickness or reduced strain. We demonstrate that the superconductivity occurs when the electrons transferred from the oxygen-vacant substrate suppress the otherwise most pronounced SDW in single layer FeSe. Besides providing a comprehensive understanding of FeSe films and directions to further enhance its Tc, we establish the phase diagram of FeSe vs. lattice constant that contains all the essential physics of Fe-HTS's. With the simplest structure, cleanest composition and single tuning parameter, it is ideal for testing theories of Fe-HTS's.

416 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Topological superconductors are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors and are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time reversal symmetry.
Abstract: Topological insulators are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors. They are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time-reversal symmetry. These topological materials have been theoretically predicted and experimentally observed in a variety of systems, including HgTe quantum wells, BiSb alloys, and Bi2Te3 and Bi2Se3 crystals. Theoretical models, materials properties, and experimental results on two-dimensional and three-dimensional topological insulators are reviewed, and both the topological band theory and the topological field theory are discussed. Topological superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. The theory of topological superconductors is reviewed, in close analogy to the theory of topological insulators.

11,092 citations

Journal Article
TL;DR: The first direct detection of gravitational waves and the first observation of a binary black hole merger were reported in this paper, with a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ.
Abstract: On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160) Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.

4,375 citations

Journal ArticleDOI
TL;DR: A binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors.
Abstract: On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of $\sim 1.7\,{\rm{s}}$ with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of ${40}_{-8}^{+8}$ Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 $\,{M}_{\odot }$. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at $\sim 40\,{\rm{Mpc}}$) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position $\sim 9$ and $\sim 16$ days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.

2,746 citations