scispace - formally typeset
Search or ask a question
Author

Toomas Esperk

Other affiliations: University of Zurich
Bio: Toomas Esperk is an academic researcher from University of Tartu. The author has contributed to research in topics: Instar & Animal ecology. The author has an hindex of 16, co-authored 26 publications receiving 1050 citations. Previous affiliations of Toomas Esperk include University of Zurich.

Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that intraspecific variability in the number of larval instars is widespread across insect taxa, occurring in most major orders, in both hemimetabolous and holometabolous insects.
Abstract: The number of larval instars varies widely across insect species. Although instar number is frequently considered to be invariable within species, intraspecific variability in the number of instars is not an exceptional phenomenon. However, the knowledge has remained fragmentary, and there are no recent attempts to synthesize the results of relevant studies. Based on published case studies, we show that intraspecific variability in the number of larval instars is widespread across insect taxa, occurring in most major orders, in both hemimetabolous and holometabolous insects. We give an overview of various factors that have been observed to affect the number of instars. Temperature, photoperiod, food quality and quantity, humidity, rearing density, physical condition, inheritance, and sex are the most common factors influencing the number of instars. We discuss adaptive scenarios that may provide ultimate explanations for the plasticity in instar number. The data available largely support the compensation scenario, according to which instar number increases in adverse conditions when larvae fail to reach a species-specific threshold size for metamorphosis. However, in Orthoptera and Coleoptera, there are some exceptional species in which instar number is higher in favorable conditions. In more specific cases, the adaptive value of the variability in instar number may be in reaching or maintaining the developmental stage adapted to hibernation, producing additional generations in multivoltine species, or increasing the probability of surviving in long-lasting adverse conditions.

209 citations

Journal ArticleDOI
TL;DR: The costs of large body size in the wingless females of Orgyiaantiqua and O.leucostigma, two related species of lymantriid moths, are revealed and a linear relationship between pupal weight and potential fecundity was observed and was found to be independent of particular rearing conditions.
Abstract: Strong correlation between female body size and potential fecundity is often observed in insects. Directional selection favouring increased body sizes is thus predicted in the absence of opposing selection pressure. The evolutionary forces capable of counterbalancing such a 'fecundity advantage' are poorly documented. This study focuses on revealing the costs of large body size in the wingless females of Orgyia antiqua and O. leucostigma, two related species of lymantriid moths. Extreme behavioural simplicity of these animals allows systematic assessment of various fitness components in conditions that are close to natural. A linear relationship between pupal weight and potential fecundity was observed. This association was found to be independent of particular rearing conditions. There was no evidence that the relationship between fecundity and body mass becomes asymptotic when body sizes increases. No component of fitness showed a negative phenotypic correlation with body size; some displayed a weakly positive one. In particular, pupal mortality, adult longevity, mating and oviposition success, as well as egg hatching rate and egg size, were established as independent of body size in a series of field and laboratory experiments. There was a very high overall efficiency of converting resources accumulated during the larval stage to egg masses. With no costs of large adult size, selective forces balancing the fecundity advantage should operate in the course of immature development. The strong dependence of realized fecundity on body size is considered characteristic of the capital breeding strategy.

145 citations

Journal ArticleDOI
TL;DR: In arthropods, the evolution of sexual size dimorphism may be constrained by a physiological limit on growth within each particular larval instar, but a high SSD could, however, be attained if the larvae of the larger sex pass through a higher number of larva instars.
Abstract: In arthropods, the evolution of sexual size dimorphism (SSD) may be constrained by a physiological limit on growth within each particular larval instar. A high SSD could, however, be attained if the larvae of the larger sex pass through a higher number of larval instars. 2. Based on a survey of published case studies, the present review shows that sex- related difference in the number of instars is a widespread phenomenon among insects. In the great majority of species with a sexually dimorphic instar number, females develop through a higher number of instars than males. 3. Female-biased sexual dimorphism in final sizes in species with sexually dimorphic instar number was found to considerably exceed a previously estimated median value of SSD for insects in general. This suggests a causal connection between high female- biased SSD, and additional instars in females. Adding an extra instar to larval development allows an insect to increase its adult size at the expense of prolonged larval development. 4. As in the case of additional instars, SSD is fully formed late in ontogeny , larval growth schedules and imaginal sizes can be optimised independently. No conflict between selective pressures operating in juvenile and adult stages is therefore expected. 5. In most species considered, the number of instars also varied within the sexes. Phenotypic plasticity in instar number may thus be a precondition for a sexual difference in instar number to evolve.

117 citations

Dissertation
01 Jan 2006

108 citations

Journal ArticleDOI
TL;DR: This study examines the intraspecific growth allometry of lepidopteran larvae to address problems arising from the complexity of the insect growth curve, and the high sensitivity of growth rates to environmental conditions.
Abstract: Summary 1The allometric relationship between growth rate and body mass has received considerable attention but different taxa have not been equally studied. In particular, a limited amount of information is available on growth allometry of insect larvae. 2In life-history studies, it is often assumed that insect larvae grow exponentially. This leads one to expect that potential rewards of extending growth periods are high in terms of increased adult body masses and fecundities. Therefore, it has been a challenge to find costs of large size that counterbalance the fecundity advantage of attaining larger sizes. 3This study examines the intraspecific growth allometry of lepidopteran larvae. Original methodology is proposed to address problems arising from the complexity of the insect growth curve, and the high sensitivity of growth rates to environmental conditions. To facilitate generalizations, larvae of 11 unrelated lepidopteran species were subjected to an identical study design. 4Instantaneous absolute growth rates of larvae were related to body size by an intraspecific allometric exponent in the range between 0·41 and 0·88. There were significant differences between the species but values of the exponent as high as 1 (exponential growth), and as low as 0 (linear growth) could safely be excluded. 5Instantaneous relative growth rates of larvae were typically 35% lower in their last instar when compared to the penultimate one. Using the exponential growth curve (i.e. assuming the constancy of relative growth rates) in modelling insect life-histories may therefore lead to substantially biased conclusions.

79 citations


Cited by
More filters
Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
20 Apr 1907
TL;DR: For instance, when a dog sees another dog at a distance, it is often clear that he perceives that it is a dog in the abstract; for when he gets nearer his whole manner suddenly changes, if the other dog be a friend as discussed by the authors.
Abstract: ION, GENERAL CONCEPTIONS, SELF-CONSCIOUSNESS, MENTAL INDIVIDUALITY. It would be very difficult for any one with even much more knowledge than I possess, to determine how far animals exhibit any traces of these high mental powers. This difficulty arises from the impossibility of judging what passes through the mind of an animal; and again, the fact that writers differ to a great extent in the meaning which they attribute to the above terms, causes a further difficulty. If one may judge from various articles which have been published lately, the greatest stress seems to be laid on the supposed entire absence in animals of the power of abstraction, or of forming general concepts. But when a dog sees another dog at a distance, it is often clear that he perceives that it is a dog in the abstract; for when he gets nearer his whole manner suddenly changes, if the other dog be a friend. A recent writer remarks, that in all such cases it is a pure assumption to assert that the mental act is not essentially of the same nature in the animal as in man. If either refers what he perceives with his senses to a mental concept, then so do both. (44. Mr. Hookham, in a letter to Prof. Max Muller, in the 'Birmingham News,' May, 1873.) When I say to my terrier, in an eager voice (and I have made the trial many times), "Hi, hi, where is it?" she at once takes it as a sign that something is to be hunted, and generally first looks quickly all around, and then rushes into the nearest thicket, to scent for any game, but finding nothing, she looks up into any neighbouring tree for a squirrel. Now do not these actions clearly shew that she had in her mind a general idea or concept that some animal is to be discovered and hunted? It may be freely admitted that no animal is self-conscious, if by this term it is implied, that he reflects on such points, as whence he comes or whither he will go, or what is life and death, and so forth. But how can we feel sure that an old dog with an excellent memory and some power of imagination, as shewn by his dreams, never reflects on his past pleasures or pains in the chase? And this would be a form of self-consciousness. On the other hand, as Buchner (45. 'Conferences sur la Theorie Darwinienne,' French translat. 1869, p. 132.) has remarked, how little can the hardworked wife of a degraded Australian savage, who uses very few abstract words, and cannot count above four, exert her self-consciousness, or reflect on the nature of her own existence. It is generally admitted, that the higher animals possess memory, attention, association, and even some imagination and reason. If these powers, which differ much in different animals, are capable of improvement, there seems no great improbability in more complex faculties, such as the higher forms of abstraction, and selfconsciousness, etc., having been evolved through the development and combination of the simpler ones. It has been urged against the views here maintained that it is impossible to say at what point in the ascending scale animals become capable of abstraction, etc.; but who can say at what age this occurs in our young children? We see at least that such powers

1,464 citations

Journal ArticleDOI
A Grant1
28 Oct 2002-Heredity
TL;DR: An excellent review of life history theory, which integrates this well with results from the empirical literature, and gives an invaluable route into the literature, with a bibliography of 1600 or so items.
Abstract: Life history biology sits on the interface between genetics and ecology, and both have made important theoretical and empirical contributions to our understanding. However, the connections between the disciplines have not always been as close as they might have been and this book takes some useful steps towards remedying this. It gives an excellent review of life history theory, and integrates this well with results from the empirical literature. After an 11-page introduction, Roff sets out ‘a framework for analysis’ in which he covers the necessary elements of quantitative and population genetics. This includes clear definitions of fitness in a range of circumstances, from density independent populations in constant environments through to the more complex situations of density and frequency dependence and environments that are spatially or temporally stochastic. Trade-offs are then examined, including a valuable analysis of potential pitfalls in studying them and ways that these can be avoided. The author then deals in turn with evolution in constant environments; stochastic environments and ‘predictable environments’. The last of these covers situations where there is environmental variation, but at least some information is available to allow individuals to make an adaptive response. The final chapter identifies 20 topics for future study. Some will find the book too dominated by theory. Others (but probably not readers of Heredity!) will find it contains too much genetics. But Roff does an excellent job of making the theory accessible, covering the essential issues and pointing to original sources for the details. Theory is related to a significant number of empirical studies, although there is room for another book reviewing the empirical literature on life histories in detail, and Roff’s book would provide a robust skeleton on which to hang this. To make my own assessment, I examined in detail Roff’s discussion of the question of fitness measures for density dependent populations in stochastic environments – an area in which I have been involved. I could not fault him – all the key references were there and the issues were made very clear without the more esoteric mathematics. I also examined some areas that I was less familiar with, and again the text was clear and easy to read. My only real criticism of the book would be that its very long chapters (more than 130 pages in one case) makes it difficult to find things. It would have been simple to address this by including the section headings on the contents pages. A minor personal quibble would be that the book usually expresses problems in terms of the intrinsic rate of increase, r, and the characteristic (Lotka) equation. A matrix formulation is often more tractable and is easier to generalise to density dependent populations and stochastic environments, so expanding on the relationship between the two would have been useful. But overall this is an excellent book. It brings together the key theory in a single place. It gives an invaluable route into the literature, with a bibliography of 1600 or so items. These features, and its identification of topics that need further study should make an important contribution to moving the field forward.

819 citations

Journal ArticleDOI
TL;DR: Insulin signaling is discussed as a possible candidate for diapause-associated nutrient regulation including adipokinetic hormone, neuropeptide F, the cGMP-kinase For, and AMPK.
Abstract: Managing metabolic resources is critical for insects during diapause when food sources are limited or unavailable. Insects accumulate reserves prior to diapause, and metabolic depression during diapause promotes reserve conservation. Sufficient reserves must be sequestered to both survive the diapause period and enable postdiapause development that may involve metabolically expensive functions such as metamorphosis or long-distance flight. Nutrient utilization during diapause is a dynamic process, and insects appear capable of sensing their energy reserves and using this information to regulate whether to enter diapause and how long to remain in diapause. Overwintering insects on a tight energy budget are likely to be especially vulnerable to increased temperatures associated with climate change. Molecular mechanisms involved in diapause nutrient regulation remain poorly known, but insulin signaling is likely a major player. We also discuss other possible candidates for diapause-associated nutrient regula...

597 citations

Journal ArticleDOI
TL;DR: This review provides a critical and synthetic overview of body size variation in insects from a predominantly macroecological (large‐scale temporal and spatial) perspective and focuses on evolutionary trends, including gigantism, Cope's rule and the rates at which size change has taken place.
Abstract: Body size is a key feature of organisms and varies continuously because of the effects of natural selection on the size-dependency of resource acquisition and mortality rates. This review provides a critical and synthetic overview of body size variation in insects from a predominantly macroecological (large-scale temporal and spatial) perspective. Because of the importance of understanding the proximate determinants of adult size, it commences with a brief summary of the physiological mechanisms underlying adult body size and its variation, based mostly on findings for the model species Drosophila melanogaster and Manduca sexta. Variation in nutrition and temperature have variable effects on critical weight, the interval to cessation of growth (or terminal growth period) and growth rates, so influencing final adult size. Ontogenetic and phylogenetic variation in size, compensatory growth, scaling at the intra- and interspecific levels, sexual size dimorphism, and body size optimisation are then reviewed in light of their influences on individual and species body size frequency distributions. Explicit attention is given to evolutionary trends, including gigantism, Cope's rule and the rates at which size change has taken place, and to temporal ecological trends such as variation in size with succession and size-selectivity during the invasion process. Large-scale spatial variation in size at the intraspecific, interspecific and assemblage levels is considered, with special attention being given to the mechanisms proposed to underlie clinal variation in adult body size. Finally, areas particularly in need of additional research are identified.

566 citations