scispace - formally typeset
Search or ask a question
Author

Torsten Fritz

Bio: Torsten Fritz is an academic researcher from University of Jena. The author has contributed to research in topics: Scanning tunneling microscope & Monolayer. The author has an hindex of 38, co-authored 152 publications receiving 6329 citations. Previous affiliations of Torsten Fritz include University of Hong Kong & Max Planck Society.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors show that doping of the transport layers can strikingly improve the properties of organic light emitting diodes (OLEDs), and they show that the electroluminescence onset voltage of Diodes containing an vanadyl-phthalocyanine (VOPc) hole transport layer intentionally doped with tetrafluorotetracyano-quinodimethan (F4-TCNQ) is reduced by up to an order of magnitude compared to OLED with undoped VOPc.
Abstract: We show that doping of the transport layers can strikingly improve the properties of organic light emitting diodes (OLEDs). The electroluminescence onset voltage of diodes containing an vanadyl–phthalocyanine (VOPc) hole transport layer intentionally doped with tetrafluorotetracyano-quinodimethan (F4-TCNQ) is reduced by up to an order of magnitude compared to OLED with undoped VOPc. The improved properties of our devices can be explained by the improved conductivity and better injection for a doped transport layer.

539 citations

Journal ArticleDOI
TL;DR: In this paper, the role of epitaxy in molecular organization on crystalline substrates is described and a much-needed grammar is presented that classifies the various modes of epitaxial formation according to transformation matrices that relate the overlayer lattice to the substrate lattice.
Abstract: The recent emergence of molecular films as candidates for functional electronic materials has prompted numerous investigations of the underlying mechanisms responsible for their structure and formation. This review describes the role of epitaxy in molecular organization on crystalline substrates. A much-needed grammar of epitaxy is presented that classifies the various modes of epitaxy according to transformation matrices that relate the overlayer lattice to the substrate lattice. The different modes of epitaxy can be organized hierarchically to reflect the balance of overlayer–substrate and molecule–molecule energies. In the case of molecular overlayers, the mismatch of overlayer and substrate symmetries commonly leads to coincident epitaxy in which some of the overlayer lattice points do not reside on substrate lattice points. Analyses of numerous reported epitaxial molecular films reveal that coincidence is quite common even though, based on overlayer–substrate interface energies alone, not as energetically favorable as commensurism. The prevalence of coincidence can be attributed to overlayer elastic constants, associated with molecule–molecule interactions within the overlayer, that are larger than the elastic constants of the overlayer–substrate interface. This condition facilitates prediction of the epitaxial configuration and overlayer structure through simple and comparatively efficient geometric modeling that does not require the input of potential energies, while revealing the role of phase coherence between the overlayer and substrate lattices.

463 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate the use of a p-doped amorphous starburst amine, 4, 4′, 4″-tris(N, N-diphenyl- amino)triphenylamine (TDATA), doped with a very strong acceptor, tetrafluoro- tetracyano-quinodimethane by controlled coevaporation as an excellent hole injection material for organic light-emitting diodes (OLEDs).
Abstract: We demonstrate the use of a p-doped amorphous starburst amine, 4, 4′, 4″-tris(N, N-diphenyl- amino)triphenylamine (TDATA), doped with a very strong acceptor, tetrafluoro- tetracyano-quinodimethane by controlled coevaporation as an excellent hole injection material for organic light-emitting diodes (OLEDs). Multilayered OLEDs consisting of double hole transport layers of p-doped TDATA and triphenyl-diamine, and an emitting layer of pure 8-tris-hydroxyquinoline aluminum exhibit a very low operating voltage (3.4 V) for obtaining 100 cd/m2 even for a comparatively large (110 nm) total hole transport layer thickness.

334 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigate the doping of vanadyl-phthalocyanine by a fluorinated form of tetracyano-quinodimethane as an example of controlled doping of thin organic dye films by cosublimation of matrix and dopant.
Abstract: We investigate the doping of vanadyl–phthalocyanine by a fluorinated form of tetracyano-quinodimethane as an example of controlled doping of thin organic dye films by cosublimation of matrix and dopant. The electrical parameters of the films derived from conductivity and Seebeck measurements show that the results largely follow standard models used to describe the doping of crystalline semiconductors; e.g., a smooth shift of the Fermi level towards the valence states with increasing doping is observed. Other effects, like the superlinear increase of conductivity with the molar doping ratio, need the inclusion of additional effects like percolation.

305 citations

Journal ArticleDOI
TL;DR: In this article, the properties of inorganic-organic interfaces were investigated by ultraviolet and X-ray photoemission spectroscopy (UPS and XPS) and transport experiments.

284 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review gives a general introduction to the materials, production techniques, working principles, critical parameters, and stability of the organic solar cells, and discusses the alternative approaches such as polymer/polymer solar cells and organic/inorganic hybrid solar cells.
Abstract: The need to develop inexpensive renewable energy sources stimulates scientific research for efficient, low-cost photovoltaic devices.1 The organic, polymer-based photovoltaic elements have introduced at least the potential of obtaining cheap and easy methods to produce energy from light.2 The possibility of chemically manipulating the material properties of polymers (plastics) combined with a variety of easy and cheap processing techniques has made polymer-based materials present in almost every aspect of modern society.3 Organic semiconductors have several advantages: (a) lowcost synthesis, and (b) easy manufacture of thin film devices by vacuum evaporation/sublimation or solution cast or printing technologies. Furthermore, organic semiconductor thin films may show high absorption coefficients4 exceeding 105 cm-1, which makes them good chromophores for optoelectronic applications. The electronic band gap of organic semiconductors can be engineered by chemical synthesis for simple color changing of light emitting diodes (LEDs).5 Charge carrier mobilities as high as 10 cm2/V‚s6 made them competitive with amorphous silicon.7 This review is organized as follows. In the first part, we will give a general introduction to the materials, production techniques, working principles, critical parameters, and stability of the organic solar cells. In the second part, we will focus on conjugated polymer/fullerene bulk heterojunction solar cells, mainly on polyphenylenevinylene (PPV) derivatives/(1-(3-methoxycarbonyl) propyl-1-phenyl[6,6]C61) (PCBM) fullerene derivatives and poly(3-hexylthiophene) (P3HT)/PCBM systems. In the third part, we will discuss the alternative approaches such as polymer/polymer solar cells and organic/inorganic hybrid solar cells. In the fourth part, we will suggest possible routes for further improvements and finish with some conclusions. The different papers mentioned in the text have been chosen for didactical purposes and cannot reflect the chronology of the research field nor have a claim of completeness. The further interested reader is referred to the vast amount of quality papers published in this field during the past decade.

6,059 citations

Journal ArticleDOI
29 Apr 2004-Nature
TL;DR: The future holds even greater promise for this technology, with an entirely new generation of ultralow-cost, lightweight and even flexible electronic devices in the offing, which will perform functions traditionally accomplished using much more expensive components based on conventional semiconductor materials such as silicon.
Abstract: Organic electronics are beginning to make significant inroads into the commercial world, and if the field continues to progress at its current, rapid pace, electronics based on organic thin-film materials will soon become a mainstay of our technological existence. Already products based on active thin-film organic devices are in the market place, most notably the displays of several mobile electronic appliances. Yet the future holds even greater promise for this technology, with an entirely new generation of ultralow-cost, lightweight and even flexible electronic devices in the offing, which will perform functions traditionally accomplished using much more expensive components based on conventional semiconductor materials such as silicon.

4,967 citations

Journal ArticleDOI
Chengliang Wang1, Huanli Dong1, Wenping Hu1, Yunqi Liu1, Daoben Zhu1 
TL;DR: The focus of this review will be on the performance analysis of π-conjugated systems in OFETs, a kind of device consisting of an organic semiconducting layer, a gate insulator layer, and three terminals that provide an important insight into the charge transport of ρconjugate systems.
Abstract: Since the discovery of highly conducting polyacetylene by Shirakawa, MacDiarmid, and Heeger in 1977, π-conjugated systems have attracted much attention as futuristic materials for the development and production of the next generation of electronics, that is, organic electronics. Conceptually, organic electronics are quite different from conventional inorganic solid state electronics because the structural versatility of organic semiconductors allows for the incorporation of functionality by molecular design. This versatility leads to a new era in the design of electronic devices. To date, the great number of π-conjugated semiconducting materials that have either been discovered or synthesized generate an exciting library of π-conjugated systems for use in organic electronics. 11 However, some key challenges for further advancement remain: the low mobility and stability of organic semiconductors, the lack of knowledge regarding structure property relationships for understanding the fundamental chemical aspects behind the structural design, and realization of desired properties. Organic field-effect transistors (OFETs) are a kind of device consisting of an organic semiconducting layer, a gate insulator layer, and three terminals (drain, source, and gate electrodes). OFETs are not only essential building blocks for the next generation of cheap and flexible organic circuits, but they also provide an important insight into the charge transport of πconjugated systems. Therefore, they act as strong tools for the exploration of the structure property relationships of πconjugated systems, such as parameters of field-effect mobility (μ, the drift velocity of carriers under unit electric field), current on/off ratio (the ratio of the maximum on-state current to the minimum off-state current), and threshold voltage (the minimum gate voltage that is required to turn on the transistor). 17 Since the discovery of OFETs in the 1980s, they have attracted much attention. Research onOFETs includes the discovery, design, and synthesis of π-conjugated systems for OFETs, device optimization, development of applications in radio frequency identification (RFID) tags, flexible displays, electronic papers, sensors, and so forth. It is beyond the scope of this review to cover all aspects of π-conjugated systems; hence, our focus will be on the performance analysis of π-conjugated systems in OFETs. This should make it possible to extract information regarding the fundamental merit of semiconducting π-conjugated materials and capture what is needed for newmaterials and what is the synthesis orientation of newπ-conjugated systems. In fact, for a new science with many practical applications, the field of organic electronics is progressing extremely rapidly. For example, using “organic field effect transistor” or “organic field effect transistors” as the query keywords to search the Web of Science citation database, it is possible to show the distribution of papers over recent years as shown in Figure 1A. It is very clear

2,942 citations

Journal ArticleDOI
TL;DR: The current status of the field of organic solar cells and the important parameters to improve their performance are discussed in this paper. But, the two competitive production techniques used today are either wet solution processing or dry thermal evaporation of the organic constituents.
Abstract: Organic solar cell research has developed during the past 30 years, but especially in the last decade it has attracted scientific and economic interest triggered by a rapid increase in power conversion efficiencies. This was achieved by the introduction of new materials, improved materials engineering, and more sophisticated device structures. Today, solar power conversion efficiencies in excess of 3% have been accomplished with several device concepts. Though efficiencies of these thin-film organicdevices have not yet reached those of their inorganic counterparts (η ≈ 10–20%); the perspective of cheap production (employing, e.g., roll-to-roll processes) drives the development of organic photovoltaic devices further in a dynamic way. The two competitive production techniques used today are either wet solution processing or dry thermal evaporation of the organic constituents. The field of organic solar cells profited well from the development of light-emitting diodes based on similar technologies, which have entered the market recently. We review here the current status of the field of organic solar cells and discuss different production technologies as well as study the important parameters to improve their performance.

2,492 citations