scispace - formally typeset
Search or ask a question
Author

Toru Takayama

Bio: Toru Takayama is an academic researcher. The author has contributed to research in topics: Thin-film transistor & Amorphous silicon. The author has an hindex of 28, co-authored 79 publications receiving 2725 citations.


Papers
More filters
Patent
15 Feb 1994
TL;DR: In this paper, a substantially amorphous silicon film is annealed at a temperature either lower than normal crystallization temperature of amorphized silicon or lower than the glass transition point of the substrate so as to crystallize the silicon film.
Abstract: Method of fabricating semiconductor devices such as thin-film transistors by annealing a substantially amorphous silicon film at a temperature either lower than normal crystallization temperature of amorphous silicon or lower than the glass transition point of the substrate so as to crystallize the silicon film. Islands, stripes, lines, or dots of nickel, iron, cobalt, or platinum, silicide, acetate, or nitrate of nickel, iron, cobalt, or platinum, film containing various salts, particles, or clusters containing at least one of nickel, iron, cobalt, and platinum are used as starting materials for crystallization. These materials are formed on or under the amorphous silicon film.

270 citations

Patent
08 Mar 1994
TL;DR: In this article, a second layer containing at least one catalytic element is formed as to be in intimate contact with the amorphous silicon film, or the catalytic elements is introduced into the polysilicon film.
Abstract: Method of fabricating a semiconductor circuit is initiated with formation of an amorphous silicon film. Then, a second layer containing at least one catalytic element is so formed as to be in intimate contact with the amorphous silicon film, or the catalytic element is introduced into the amorphous silicon film. This amorphous silicon film is selectively irradiated with laser light or other equivalent intense light to crystallize the amorphous silicon film.

166 citations

Patent
24 May 1995
TL;DR: In this paper, a process for fabricating a thin-film transistor, which comprises crystallizing an amorphous silicon film, forming thereon a gate insulating film and a gate electrode, implanting impurities in a self-aligned manner, and annealing the resulting structure at a temperature lower than the deformation temperature of the substrate to activate the doped impurities.
Abstract: A process for fabricating a thin film transistor, which comprises crystallizing an amorphous silicon film, forming thereon a gate insulating film and a gate electrode, implanting impurities in a self-aligned manner, adhering a coating containing a catalyst element which accelerates the crystallization of the silicon film, and annealing the resulting structure at a temperature lower than the deformation temperature of the substrate to activate the doped impurities. Otherwise, the catalyst element can be incorporated into the structure by introducing it into the impurity region by means of ion implantation and the like. Also a process for fabricating a thin film transistor, which comprises forming a gate electrode, a gate insulating film, and an amorphous silicon film on a substrate, implanting impurities into the amorphous silicon film to form source and drain regions as the impurity regions, introducing a catalyst element into the impurity region by adhering a coating containing the catalyst element of by means of ion doping and the like, and annealing the resulting structure at a temperature lower than the deformation temperature of the substrate to activate the doped impurities.

141 citations

Patent
24 May 1994
TL;DR: In this article, an active matrix type liquid crystal display whose thin film transistors (TFTs) in the peripheral circuit section are composed of the crystalline silicon film whose crystal is grown in the direction parallel to the flow of carriers and whose TFTs in the picture element section are made of the amorphous silicon film can be obtained.
Abstract: Nickel is introduced to a predetermined region of a peripheral circuit section, other than a picture element section, on an amorphous silicon film to crystallize from that region. After forming gate electrodes and others, sources, drains and channels are formed by doping impurities, and laser is irradiated to improve the crystallization. After that, electrodes/wires are formed. Thereby an active matrix type liquid crystal display whose thin film transistors (TFT) in the peripheral circuit section are composed of the crystalline silicon film whose crystal is grown in the direction parallel to the flow of carriers and whose TFTs in the picture element section are composed of the amorphous silicon film can be obtained.

140 citations

Patent
08 Mar 1994
TL;DR: In this article, a small amount of a catalyst element for promoting crystallization is added to an amorphous silicon film, and an annealing process is conducted at a temperature which is lower than the distortion temperature of a substrate, thereby crystallizing the amorphized silicon film.
Abstract: A substance containing a catalyst element is formed so as to closely contact with an amorphous silicon film, or a catalyst element is introduced into the amorphous silicon film. The amorphous silicon film is annealed at a temperature which is lower than a crystallization temperature of usual amorphous silicon, thereby selectively crystallizing the amorphous silicon film. The crystallized region is used as a crystalline silicon TFT which can be used in a peripheral driver circuit of an active matrix circuit. The region which remains amorphous is used as an amorphous silicon TFT which can be used in a pixel circuit. A relatively small amount of a catalyst element for promoting crystallization is added to an amorphous silicon film, and an annealing process is conducted at a temperature which is lower than the distortion temperature of a substrate, thereby crystallizing the amorphous silicon film. A gate insulating film, and a gate electrode are then formed, and an impurity is implanted in a self-alignment manner. A film containing a catalyst element for promoting crystallization is closely contacted with the impurity region, or a relatively large amount of a catalyst element is introduced into the impurity region by an ion implantation or the like. Then, an annealing process is conducted at a temperature which is lower than the distortion temperature of the substrate, thereby activating the doping impurity.

133 citations


Cited by
More filters
Patent
01 Aug 2008
TL;DR: In this article, the oxide semiconductor film has at least a crystallized region in a channel region, which is defined as a region of interest (ROI) for a semiconductor device.
Abstract: An object is to provide a semiconductor device of which a manufacturing process is not complicated and by which cost can be suppressed, by forming a thin film transistor using an oxide semiconductor film typified by zinc oxide, and a manufacturing method thereof. For the semiconductor device, a gate electrode is formed over a substrate; a gate insulating film is formed covering the gate electrode; an oxide semiconductor film is formed over the gate insulating film; and a first conductive film and a second conductive film are formed over the oxide semiconductor film. The oxide semiconductor film has at least a crystallized region in a channel region.

1,501 citations

Patent
25 Sep 2013
TL;DR: In this paper, a connection terminal portion is provided with a plurality of connection pads which are part of the connection terminal, each of which includes a first connection pad and a second connection pad having a line width different from that of the first one.
Abstract: An object of the present invention is to decrease the resistance of a power supply line, to suppress a voltage drop in the power supply line, and to prevent defective display. A connection terminal portion includes a plurality of connection terminals. The plurality of connection terminals is provided with a plurality of connection pads which is part of the connection terminal. The plurality of connection pads includes a first connection pad and a second connection pad having a line width different from that of the first connection pad. Pitches between the plurality of connection pads are equal to each other.

1,136 citations

Patent
08 Jan 2003
TL;DR: In this article, the surface of a source signal line or a power supply line in a pixel portion is plated to reduce a resistance of a wiring, and a terminal is similarly plated in order to make the resistance reduction.
Abstract: There is provided a light emitting device in which low power consumption can be realized even in the case of a large screen. The surface of a source signal line or a power supply line in a pixel portion is plated to reduce a resistance of a wiring. The source signal line in the pixel portion is manufactured by a step different from a source signal line in a driver circuit portion. The power supply line in the pixel portion is manufactured by a step different from a power supply line led on a substrate. A terminal is similarly plated to made the resistance reduction. It is desirable that a wiring before plating is made of the same material as a gate electrode and the surface of the wiring is plated to form the source signal line or the power supply line.

806 citations

Patent
22 Dec 2004
TL;DR: In this article, an active layer comprising a silicon semiconductor is formed on a substrate having an insulating surface Hydrogen is introduced into The active layer, a thin film comprising SiO x N y is formed to cover the active layer and then a gate insulating film comprising silicon oxide film formed on the thin film.
Abstract: In fabricating a thin film transistor, an active layer comprising a silicon semiconductor is formed on a substrate having an insulating surface Hydrogen is introduced into The active layer A thin film comprising SiO x N y is formed to cover the active layer and then a gate insulating film comprising a silicon oxide film formed on the thin film comprising SiO x N y Also, a thin film comprising SiO x N y is formed under the active layer The active layer includes a metal element at a concentration of 1×10 15 to 1×10 19 cm −3 and hydrogen at a concentration of 2×10 19 to 5×10 21 cm −3

719 citations

Patent
05 May 2014
TL;DR: In this paper, an organic light-emitting display (OLED) was proposed to display an image with high contrast and/or impact resistance, where a sealing member was placed on the organic light emitting device and a semitransparent film on a surface of the sealing member facing away from the OLED device.
Abstract: An organic light emitting display apparatus that has high (or improved) contrast and/or impact resistance. The organic light emitting display apparatus includes: a substrate; an organic light emitting device on the substrate to display an image; a sealing member on the organic light emitting device; a semitransparent film on a surface of the sealing member facing away from the organic light emitting device to transmit a portion of external light and to reflect another portion of the external light; a passivation film on the semitransparent film to protect the semitransparent film; and a transmissive black layer between the sealing member and the organic light emitting device to increase contrast, wherein the semitransparent film has a refractive index greater than that of the passivation film.

699 citations