scispace - formally typeset
Search or ask a question
Author

Toshihisa Funabashi

Bio: Toshihisa Funabashi is an academic researcher from Nagoya University. The author has contributed to research in topics: Electric power system & Wind power. The author has an hindex of 56, co-authored 453 publications receiving 12413 citations. Previous affiliations of Toshihisa Funabashi include University of Texas at El Paso & Meidensha.


Papers
More filters
Journal ArticleDOI
TL;DR: The first part of a two-part paper that has arisen from the work of the IEEE Power Engineering Society's Multi-Agent Systems (MAS) Working Group as mentioned in this paper examines the potential value of MAS technology to the power industry.
Abstract: This is the first part of a two-part paper that has arisen from the work of the IEEE Power Engineering Society's Multi-Agent Systems (MAS) Working Group. Part I of this paper examines the potential value of MAS technology to the power industry. In terms of contribution, it describes fundamental concepts and approaches within the field of multi-agent systems that are appropriate to power engineering applications. As well as presenting a comprehensive review of the meaningful power engineering applications for which MAS are being investigated, it also defines the technical issues which must be addressed in order to accelerate and facilitate the uptake of the technology within the power and energy sector. Part II of this paper explores the decisions inherent in engineering multi-agent systems for applications in the power and energy sector and offers guidance and recommendations on how MAS can be designed and implemented.

1,063 citations

Journal ArticleDOI
TL;DR: The problem of interoperability between different multi-agent systems and proposes how this may be tackled and the various options available are described and recommendations on best practice are made.
Abstract: This is the second part of a two-part paper that has arisen from the work of the IEEE Power Engineering Society's Multi-Agent Systems (MAS) Working Group. Part I of this paper examined the potential value of MAS technology to the power industry, described fundamental concepts and approaches within the field of multi-agent systems that are appropriate to power engineering applications, and presented a comprehensive review of the power engineering applications for which MAS are being investigated. It also defined the technical issues which must be addressed in order to accelerate and facilitate the uptake of the technology within the power and energy sector. Part II of this paper explores the decisions inherent in engineering multi-agent systems for applications in the power and energy sector and offers guidance and recommendations on how MAS can be designed and implemented. Given the significant and growing interest in this field, it is imperative that the power engineering community considers the standards, tools, supporting technologies, and design methodologies available to those wishing to implement a MAS solution for a power engineering problem. This paper describes the various options available and makes recommendations on best practice. It also describes the problem of interoperability between different multi-agent systems and proposes how this may be tackled.

523 citations

Journal ArticleDOI
TL;DR: In this paper, a generalized predictive control strategy based on average wind speed and standard deviation of wind speed was proposed to control the pitch angle of the blades of a wind turbine generator.
Abstract: Wind energy is not constant and windmill output is proportional to the cube of wind speed, which causes the generated power of wind turbine generators (WTGs) to fluctuate. In order to reduce fluctuation, different methods are available to control the pitch angle of blades of windmill. In a previous work, we proposed the pitch angle control using minimum variance control, and output power leveling was achieved. However, it is a controlled output power for only rated wind speed region. This paper presents a control strategy based on average wind speed and standard deviation of wind speed and pitch angle control using a generalized predictive control in all operating regions for a WTG. The simulation results by using actual detailed model for wind power system show the effectiveness of the proposed method.

446 citations

Journal ArticleDOI
TL;DR: In this paper, the optimal control of distribution voltage with coordination of distributed installations, such as the load ratio control transformer, step voltage regulator (SVR), shunt capacitor, shunt reactor, and static var compensator, is proposed.
Abstract: In recent years, distributed generation, as clean natural energy generation and cogeneration system of high thermal efficiency, has increased due to the problems of global warming and exhaustion of fossil fuels. Many of the distributed generations are set up in the vicinity of the customer, with the advantage that this decreases transmission losses. However, output power generated from natural energy, such as wind power, photovoltaics, etc., which is distributed generation, is influenced by meteorological conditions. Therefore, when the distributed generation increases by conventional control techniques, it is expected that the voltage change of each node becomes a problem. Proposed in this paper is the optimal control of distribution voltage with coordination of distributed installations, such as the load ratio control transformer, step voltage regulator (SVR), shunt capacitor, shunt reactor, and static var compensator. In this research, SVR is assumed to be a model with tap changing where the signal is received from a central control unit. Moreover, the communication infrastructure in the supply of a distribution system is assumed to be widespread. The genetic algorithm is used to determine the operation of this control. In order to confirm the validity of the proposed method, simulations are carried out for a distribution network model with distributed generation (photovoltaic generation).

428 citations

Journal ArticleDOI
TL;DR: In this paper, a new unit commitment problem, adapting extended priority list (EPL) method is introduced, which consists of two steps, in the first step, in order to get rapidly some initial unit commitment problems by priority list method, operational constraints are disregarded.
Abstract: This paper introduces a new unit commitment problem, adapting extended priority list (EPL) method. The EPL method consists of two steps, in the first step we get rapidly some initial unit commitment problem schedules by priority list (PL) method. At this step, operational constraints are disregarded. In the second step unit schedule is modified using the problem specific heuristics to fulfill operational constraints. To calculate efficiently, however, note that some heuristics applied only to solutions can expect improvement. Several numerical examples demonstrate the effectiveness of proposed method.

406 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The major issues and challenges in microgrid control are discussed, and a review of state-of-the-art control strategies and trends is presented; a general overview of the main control principles (e.g., droop control, model predictive control, multi-agent systems).
Abstract: The increasing interest in integrating intermittent renewable energy sources into microgrids presents major challenges from the viewpoints of reliable operation and control. In this paper, the major issues and challenges in microgrid control are discussed, and a review of state-of-the-art control strategies and trends is presented; a general overview of the main control principles (e.g., droop control, model predictive control, multi-agent systems) is also included. The paper classifies microgrid control strategies into three levels: primary, secondary, and tertiary, where primary and secondary levels are associated with the operation of the microgrid itself, and tertiary level pertains to the coordinated operation of the microgrid and the host grid. Each control level is discussed in detail in view of the relevant existing technical literature.

2,358 citations

Journal ArticleDOI
TL;DR: In this paper, the authors give an overview on 3D printing techniques of polymer composite materials and the properties and performance of 3D printed composite parts as well as their potential applications in the fields of biomedical, electronics and aerospace engineering.
Abstract: The use of 3D printing for rapid tooling and manufacturing has promised to produce components with complex geometries according to computer designs. Due to the intrinsically limited mechanical properties and functionalities of printed pure polymer parts, there is a critical need to develop printable polymer composites with high performance. 3D printing offers many advantages in the fabrication of composites, including high precision, cost effective and customized geometry. This article gives an overview on 3D printing techniques of polymer composite materials and the properties and performance of 3D printed composite parts as well as their potential applications in the fields of biomedical, electronics and aerospace engineering. Common 3D printing techniques such as fused deposition modeling, selective laser sintering, inkjet 3D printing, stereolithography, and 3D plotting are introduced. The formation methodology and the performance of particle-, fiber- and nanomaterial-reinforced polymer composites are emphasized. Finally, important limitations are identified to motivate the future research of 3D printing.

2,132 citations

Journal ArticleDOI
TL;DR: Decentralized, distributed, and hierarchical control of grid-connected and islanded microgrids that mimic the behavior of the mains grid is reviewed.
Abstract: This paper presents a review of advanced control techniques for microgrids. This paper covers decentralized, distributed, and hierarchical control of grid-connected and islanded microgrids. At first, decentralized control techniques for microgrids are reviewed. Then, the recent developments in the stability analysis of decentralized controlled microgrids are discussed. Finally, hierarchical control for microgrids that mimic the behavior of the mains grid is reviewed.

1,702 citations

Journal ArticleDOI
TL;DR: In this paper, a new mixed-integer linear formulation for the unit commitment problem of thermal units is presented, which requires fewer binary variables and constraints than previously reported models, yielding a significant computational saving.
Abstract: This paper presents a new mixed-integer linear formulation for the unit commitment problem of thermal units. The formulation proposed requires fewer binary variables and constraints than previously reported models, yielding a significant computational saving. Furthermore, the modeling framework provided by the new formulation allows including a precise description of time-dependent startup costs and intertemporal constraints such as ramping limits and minimum up and down times. A commercially available mixed-integer linear programming algorithm has been applied to efficiently solve the unit commitment problem for practical large-scale cases. Simulation results back these conclusions

1,601 citations

Journal ArticleDOI
TL;DR: A review of the current state of the art in computational optimization methods applied to renewable and sustainable energy can be found in this article, which offers a clear vision of the latest research advances in this field.
Abstract: Energy is a vital input for social and economic development. As a result of the generalization of agricultural, industrial and domestic activities the demand for energy has increased remarkably, especially in emergent countries. This has meant rapid grower in the level of greenhouse gas emissions and the increase in fuel prices, which are the main driving forces behind efforts to utilize renewable energy sources more effectively, i.e. energy which comes from natural resources and is also naturally replenished. Despite the obvious advantages of renewable energy, it presents important drawbacks, such as the discontinuity of generation, as most renewable energy resources depend on the climate, which is why their use requires complex design, planning and control optimization methods. Fortunately, the continuous advances in computer hardware and software are allowing researchers to deal with these optimization problems using computational resources, as can be seen in the large number of optimization methods that have been applied to the renewable and sustainable energy field. This paper presents a review of the current state of the art in computational optimization methods applied to renewable and sustainable energy, offering a clear vision of the latest research advances in this field.

1,394 citations