scispace - formally typeset
Search or ask a question
Author

Toshiki Kataoka

Bio: Toshiki Kataoka is an academic researcher. The author has contributed to research in topics: Reinforcement learning & Normalization (statistics). The author has an hindex of 4, co-authored 4 publications receiving 3001 citations.

Papers
More filters
Proceedings Article
15 Feb 2018
TL;DR: In this paper, the authors proposed a novel weight normalization technique called spectral normalization to stabilize the training of the discriminator, which is computationally light and easy to incorporate into existing implementations.
Abstract: One of the challenges in the study of generative adversarial networks is the instability of its training. In this paper, we propose a novel weight normalization technique called spectral normalization to stabilize the training of the discriminator. Our new normalization technique is computationally light and easy to incorporate into existing implementations. We tested the efficacy of spectral normalization on CIFAR10, STL-10, and ILSVRC2012 dataset, and we experimentally confirmed that spectrally normalized GANs (SN-GANs) is capable of generating images of better or equal quality relative to the previous training stabilization techniques.

2,640 citations

Posted Content
TL;DR: In this article, the authors proposed a novel weight normalization technique called spectral normalization to stabilize the training of the discriminator, which is computationally light and easy to incorporate into existing implementations.
Abstract: One of the challenges in the study of generative adversarial networks is the instability of its training. In this paper, we propose a novel weight normalization technique called spectral normalization to stabilize the training of the discriminator. Our new normalization technique is computationally light and easy to incorporate into existing implementations. We tested the efficacy of spectral normalization on CIFAR10, STL-10, and ILSVRC2012 dataset, and we experimentally confirmed that spectrally normalized GANs (SN-GANs) is capable of generating images of better or equal quality relative to the previous training stabilization techniques.

1,194 citations

Posted Content
TL;DR: ChainerRL is an open-source Deep Reinforcement Learning library built using Python and the Chainer deep learning framework that implements a comprehensive set of DRL algorithms and techniques drawn from the state-of-the-art research in the field.
Abstract: In this paper, we introduce ChainerRL, an open-source deep reinforcement learning (DRL) library built using Python and the Chainer deep learning framework. ChainerRL implements a comprehensive set of DRL algorithms and techniques drawn from state-of-the-art research in the field. To foster reproducible research, and for instructional purposes, ChainerRL provides scripts that closely replicate the original papers' experimental settings and reproduce published benchmark results for several algorithms. Lastly, ChainerRL offers a visualization tool that enables the qualitative inspection of trained agents. The ChainerRL source code can be found on GitHub: this https URL.

56 citations

Journal Article
TL;DR: ChainerRL as discussed by the authors is an open-source deep reinforcement learning (DRL) library built using Python and the Chainer deep learning framework, which implements a comprehensive set of DRL algorithms and techniques drawn from state-of-the-art research in the field.
Abstract: In this paper, we introduce ChainerRL, an open-source deep reinforcement learning (DRL) library built using Python and the Chainer deep learning framework. ChainerRL implements a comprehensive set of DRL algorithms and techniques drawn from state-of-the-art research in the field. To foster reproducible research, and for instructional purposes, ChainerRL provides scripts that closely replicate the original papers' experimental settings and reproduce published benchmark results for several algorithms. Lastly, ChainerRL offers a visualization tool that enables the qualitative inspection of trained agents. The ChainerRL source code can be found on GitHub: this https URL.

29 citations

Journal ArticleDOI
TL;DR: A novel coarse-grained tree representation of molecules (Reversible Junction Tree) is designed, which is reversely convertible to the original molecule without external information, and formulated the molecular design and optimization problem as a tree-structure construction using deep reinforcement learning (“RJT-RL”).
Abstract: Automatic design of molecules with specific chemical and biochemical properties is an important process in material informatics and computational drug discovery. In this study, we designed a novel coarse-grained tree representation of molecules (Reversible Junction Tree; “RJT”) for the aforementioned purposes, which is reversely convertible to the original molecule without external information. By leveraging this representation, we further formulated the molecular design and optimization problem as a tree-structure construction using deep reinforcement learning (“RJT-RL”). In this method, all of the intermediate and final states of reinforcement learning are convertible to valid molecules, which could efficiently guide the optimization process in simple benchmark tasks. We further examined the multiobjective optimization and fine-tuning of the reinforcement learning models using RJT-RL, demonstrating the applicability of our method to more realistic tasks in drug discovery.

2 citations


Cited by
More filters
Posted Content
TL;DR: High quality image synthesis results are presented using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics, which naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding.
Abstract: We present high quality image synthesis results using diffusion probabilistic models, a class of latent variable models inspired by considerations from nonequilibrium thermodynamics. Our best results are obtained by training on a weighted variational bound designed according to a novel connection between diffusion probabilistic models and denoising score matching with Langevin dynamics, and our models naturally admit a progressive lossy decompression scheme that can be interpreted as a generalization of autoregressive decoding. On the unconditional CIFAR10 dataset, we obtain an Inception score of 9.46 and a state-of-the-art FID score of 3.17. On 256x256 LSUN, we obtain sample quality similar to ProgressiveGAN. Our implementation is available at this https URL

2,704 citations

Posted Content
TL;DR: This work redesigns the generator normalization, revisit progressive growing, and regularize the generator to encourage good conditioning in the mapping from latent codes to images, and thereby redefines the state of the art in unconditional image modeling.
Abstract: The style-based GAN architecture (StyleGAN) yields state-of-the-art results in data-driven unconditional generative image modeling. We expose and analyze several of its characteristic artifacts, and propose changes in both model architecture and training methods to address them. In particular, we redesign the generator normalization, revisit progressive growing, and regularize the generator to encourage good conditioning in the mapping from latent codes to images. In addition to improving image quality, this path length regularizer yields the additional benefit that the generator becomes significantly easier to invert. This makes it possible to reliably attribute a generated image to a particular network. We furthermore visualize how well the generator utilizes its output resolution, and identify a capacity problem, motivating us to train larger models for additional quality improvements. Overall, our improved model redefines the state of the art in unconditional image modeling, both in terms of existing distribution quality metrics as well as perceived image quality.

2,411 citations

Proceedings ArticleDOI
18 Mar 2019
TL;DR: S spatially-adaptive normalization is proposed, a simple but effective layer for synthesizing photorealistic images given an input semantic layout that allows users to easily control the style and content of image synthesis results as well as create multi-modal results.
Abstract: We propose spatially-adaptive normalization, a simple but effective layer for synthesizing photorealistic images given an input semantic layout. Previous methods directly feed the semantic layout as input to the network, forcing the network to memorize the information throughout all the layers. Instead, we propose using the input layout for modulating the activations in normalization layers through a spatially-adaptive, learned affine transformation. Experiments on several challenging datasets demonstrate the superiority of our method compared to existing approaches, regarding both visual fidelity and alignment with input layouts. Finally, our model allows users to easily control the style and content of image synthesis results as well as create multi-modal results. Code is available upon publication.

2,159 citations

Posted Content
TL;DR: Self-Attention Generative Adversarial Network (SAGAN) as mentioned in this paper uses attention-driven, long-range dependency modeling for image generation tasks and achieves state-of-the-art results.
Abstract: In this paper, we propose the Self-Attention Generative Adversarial Network (SAGAN) which allows attention-driven, long-range dependency modeling for image generation tasks. Traditional convolutional GANs generate high-resolution details as a function of only spatially local points in lower-resolution feature maps. In SAGAN, details can be generated using cues from all feature locations. Moreover, the discriminator can check that highly detailed features in distant portions of the image are consistent with each other. Furthermore, recent work has shown that generator conditioning affects GAN performance. Leveraging this insight, we apply spectral normalization to the GAN generator and find that this improves training dynamics. The proposed SAGAN achieves the state-of-the-art results, boosting the best published Inception score from 36.8 to 52.52 and reducing Frechet Inception distance from 27.62 to 18.65 on the challenging ImageNet dataset. Visualization of the attention layers shows that the generator leverages neighborhoods that correspond to object shapes rather than local regions of fixed shape.

2,106 citations

Proceedings ArticleDOI
14 Jun 2020
TL;DR: In this paper, the authors propose to redesign the generator normalization, revisit progressive growing, and regularize the generator to encourage good conditioning in the mapping from latent codes to images.
Abstract: The style-based GAN architecture (StyleGAN) yields state-of-the-art results in data-driven unconditional generative image modeling. We expose and analyze several of its characteristic artifacts, and propose changes in both model architecture and training methods to address them. In particular, we redesign the generator normalization, revisit progressive growing, and regularize the generator to encourage good conditioning in the mapping from latent codes to images. In addition to improving image quality, this path length regularizer yields the additional benefit that the generator becomes significantly easier to invert. This makes it possible to reliably attribute a generated image to a particular network. We furthermore visualize how well the generator utilizes its output resolution, and identify a capacity problem, motivating us to train larger models for additional quality improvements. Overall, our improved model redefines the state of the art in unconditional image modeling, both in terms of existing distribution quality metrics as well as perceived image quality.

2,006 citations