scispace - formally typeset
Search or ask a question
Author

Toshinori Kozaki

Bio: Toshinori Kozaki is an academic researcher from Tokyo University of Agriculture and Technology. The author has contributed to research in topics: Gene & Gene expression. The author has an hindex of 8, co-authored 15 publications receiving 301 citations. Previous affiliations of Toshinori Kozaki include Ibaraki University & Dr Emilio B Espinosa Sr Memorial State College of Agriculture and Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that the symbiotic function of ancestral CERK1 in AM symbiosis enabled the molecular evolution to leguminous NFR1 and resulted in the establishment of legume-rhizobia symbiosis.
Abstract: Plants are constantly exposed to threats from pathogenic microbes and thus developed an innate immune system to protect themselves. On the other hand, many plants also have the ability to establish endosymbiosis with beneficial microbes such as arbuscular mycorrhizal (AM) fungi or rhizobial bacteria, which improves the growth of host plants. How plants evolved these systems managing such opposite plant-microbe interactions is unclear. We show here that knockout (KO) mutants of OsCERK1, a rice receptor kinase essential for chitin signaling, were impaired not only for chitin-triggered defense responses but also for AM symbiosis, indicating the bifunctionality of OsCERK1 in defense and symbiosis. On the other hand, a KO mutant of OsCEBiP, which forms a receptor complex with OsCERK1 and is essential for chitin-triggered immunity, established mycorrhizal symbiosis normally. Therefore, OsCERK1 but not chitin-triggered immunity is required for AM symbiosis. Furthermore, experiments with chimeric receptors showed that the kinase domains of OsCERK1 and homologs from non-leguminous, mycorrhizal plants could trigger nodulation signaling in legume-rhizobium interactions as the kinase domain of Nod factor receptor1 (NFR1), which is essential for triggering the nodulation program in leguminous plants, did. Because leguminous plants are believed to have developed the rhizobial symbiosis on the basis of AM symbiosis, our results suggest that the symbiotic function of ancestral CERK1 in AM symbiosis enabled the molecular evolution to leguminous NFR1 and resulted in the establishment of legume-rhizobia symbiosis. These results also suggest that OsCERK1 and homologs serve as a molecular switch that activates defense or symbiotic responses depending on the infecting microbes.

181 citations

Journal ArticleDOI
28 Oct 2015-PLOS ONE
TL;DR: Both transcription factor candidates and antisense transcripts are uncovered that are likely to be involved in developmental regulation for fruiting bodies of C. cinerea.
Abstract: The basidiomycete fungus Coprinopsis cinerea is an important model system for multicellular development. Fruiting bodies of C. cinerea are typical mushrooms, which can be produced synchronously on defined media in the laboratory. To investigate the transcriptome in detail during fruiting body development, high-throughput sequencing (RNA-seq) was performed using cDNA libraries strand-specifically constructed from 13 points (stages/tissues) with two biological replicates. The reads were aligned to 14,245 predicted transcripts, and counted for forward and reverse transcripts. Differentially expressed genes (DEGs) between two adjacent points and between vegetative mycelium and each point were detected by Tag Count Comparison (TCC). To validate RNA-seq data, expression levels of selected genes were compared using RPKM values in RNA-seq data and qRT-PCR data, and DEGs detected in microarray data were examined in MA plots of RNA-seq data by TCC. We discuss events deduced from GO analysis of DEGs. In addition, we uncovered both transcription factor candidates and antisense transcripts that are likely to be involved in developmental regulation for fruiting.

80 citations

Journal ArticleDOI
TL;DR: This paper describes a method for removing redundant contigs within raw contigs that were primarily created by de novo assembly of Arabidopsis thaliana RNA-Seq reads through a homology search against a gene or protein database, and can be used with unsequenced plant genomes that lack a well-developed gene database.
Abstract: For plant species with unsequenced genomes, cDNA contigs created by de novo assembly of RNA-Seq reads are used as reference sequences for comparative analysis of RNA-Seq datasets and the detection of differentially expressed genes (DEGs). Redundancies in such contigs are evident in previous RNA-Seq studies, and such redundancies can lead to difficulties in subsequent analysis. Nevertheless, the effects of removing redundancy from contig assemblies on comparative RNA-Seq analysis have not been evaluated. Here we describe a method for removing redundancy from raw contigs that were primarily created by de novo assembly of Arabidopsis thaliana RNA-Seq reads. Specifically, the contigs with the highest bit scores were selected from raw contigs by a homology search against the gene dataset in the TAIR10 database. The two existing methods for removal of redundancy based on contig length or clustering analysis used to eliminate redundancies from raw contigs. Contig number was reduced most effectively with the method based on homology search. In a comparative analysis of RNA-Seq datasets, DEGs detected in contigs that underwent redundancy removal via the homology search method showed the highest identity to the DEGs detected when the TAIR10 gene dataset was used as an exact reference. Redundancy in raw contigs could also be removed by a homology search against integrated protein datasets from several plant species other than A. thaliana. DEGs detected using contigs that underwent such redundancy-removed also showed high homology to DEGs detected using the TAIR10 gene dataset. Here we describe a method for removing redundant contigs within raw contigs; this method involves a homology search against a gene or protein database. In principal, this method can be used with unsequenced plant genomes that lack a well-developed gene database. Redundant contigs were not removed adequately via either of two existing methods, but our method allowed for removal of all redundant contigs. To our knowledge, this is the first reported improvement in accurate detection of DEGs via comparative RNA-Seq analysis that involved preparation of a non-redundant reference sequence. This method could be used to rapidly and cost-effectively detect useful genes in unsequenced plants.

33 citations

Journal ArticleDOI
TL;DR: Cattle manure might be a more suitable raw material for the production of composts to be used in the biofiltration of ammonia, and the quantities of chemical components differed between the cattle manure and food waste composts, indicating that the raw materials provided different fermentation environments that were crucial for the formation of different community profiles.

22 citations

Journal ArticleDOI
07 Sep 2018-PLOS ONE
TL;DR: RNA-Seq data for the 72 known species of spider mites were obtained to analyze the phylogeny of the sub-family Tetranychinae and strongly support the previous molecular inference of the polyphyletic tribes and genera, although the molecular phylogenies does not fully agree with the current morphology-based taxonomy.
Abstract: Phylogenetic trees of spider mites were previously obtained using 18S and 28S rRNA genes. Because some of the bootstrap values were relatively low, these trees were unable to completely resolve the phylogeny. Here, we obtained RNA-Seq data for the 72 known species (73 strains) of spider mites to analyze the phylogeny of the sub-family Tetranychinae. The data were de novo assembled into a total alignment length of 790,047 bases corresponding to 264,133 amino acid residues in 652 genes. The sequence dataset was 200 times larger than the data used in the previous study. The new trees were much more robust and more clearly defined the clades of the tribes and the genera of the sub-family Tetranychinae. The tribe Tetranychini was polyphyletic because a monophyletic clade of Eurytetranychini was placed inside it. The six genera from which two or more species were sampled appeared to be monophyletic, but four genera (Schizotetranychus, Eotetranychus, Oligonychus and Tetranychus) appeared to be polyphyletic. These results strongly support the previous molecular inference of the polyphyletic tribes and genera, although the molecular phylogeny of the sub-family Tetranychinae does not fully agree with the current morphology-based taxonomy. The taxonomy of the sub-family Tetranychinae should be revised according to the molecular relationships revealed by this study.

18 citations


Cited by
More filters
01 Jan 2011
TL;DR: The sheer volume and scope of data posed by this flood of data pose a significant challenge to the development of efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data.
Abstract: Rapid improvements in sequencing and array-based platforms are resulting in a flood of diverse genome-wide data, including data from exome and whole-genome sequencing, epigenetic surveys, expression profiling of coding and noncoding RNAs, single nucleotide polymorphism (SNP) and copy number profiling, and functional assays. Analysis of these large, diverse data sets holds the promise of a more comprehensive understanding of the genome and its relation to human disease. Experienced and knowledgeable human review is an essential component of this process, complementing computational approaches. This calls for efficient and intuitive visualization tools able to scale to very large data sets and to flexibly integrate multiple data types, including clinical data. However, the sheer volume and scope of data pose a significant challenge to the development of such tools.

2,187 citations

01 Jan 2004
TL;DR: DMI3, a Medicago truncatula gene that acts immediately downstream of calcium spiking in this signaling pathway and is required for both nodulation and mycorrhizal infection, has high sequence similarity to genes encoding calcium and calmodulin-dependent protein kinases (CCaMKs).
Abstract: Legumes can enter into symbiotic relationships with both nitrogen-fixing bacteria (rhizobia) and mycorrhizal fungi. Nodulation by rhizobia results from a signal transduction pathway induced in legume roots by rhizobial Nod factors. DMI3 ,a Medicago truncatula gene that acts immediately downstream of calcium spiking in this signaling pathway and is required for both nodulation and mycorrhizal infection, has high sequence similarity to genes encoding calcium and calmodulin-dependent protein kinases (CCaMKs). This indicates that calcium spiking is likely an essential component of the signaling cascade leading to nodule development and mycorrhizal infection, and sheds light on the biological role of plant CCaMKs.

679 citations

Journal ArticleDOI
16 Mar 2017-Nature
TL;DR: Achieving this balance requires the perception of potential invading microorganisms through the signals that they produce, followed by the activation of either symbiotic responses that promote microbial colonization or immune responses that limit it.
Abstract: Plants encounter a myriad of microorganisms, particularly at the root–soil interface, that can invade with detrimental or beneficial outcomes. Prevalent beneficial associations between plants and microorganisms include those that promote plant growth by facilitating the acquisition of limiting nutrients such as nitrogen and phosphorus. But while promoting such symbiotic relationships, plants must restrict the formation of pathogenic associations. Achieving this balance requires the perception of potential invading microorganisms through the signals that they produce, followed by the activation of either symbiotic responses that promote microbial colonization or immune responses that limit it.

476 citations

Journal ArticleDOI
TL;DR: An alternative view of plant innate immunity as a system that evolves to detect invasion is discussed, which accommodates the range from mutualistic to parasitic symbioses that plants form with diverse organisms, as well as the spectrum of ligands that the plant immune system perceives.
Abstract: Various conceptual models to describe the plant immune system have been presented. The most recent paradigm to gain wide acceptance in the field is often referred to as the zigzag model, which reconciles the previously formulated gene-for-gene hypothesis with the recognition of general elicitors in a single model. This review focuses on the limitations of the current paradigm of molecular plant-microbe interactions and how it too narrowly defines the plant immune system. As such, we discuss an alternative view of plant innate immunity as a system that evolves to detect invasion. This view accommodates the range from mutualistic to parasitic symbioses that plants form with diverse organisms, as well as the spectrum of ligands that the plant immune system perceives. Finally, how this view can contribute to the current practice of resistance breeding is discussed.

393 citations

Journal ArticleDOI
TL;DR: Rhizobia are some of the best-studied plant microbiota, which must exist in soil and compete with other members of the microbiota before infecting legumes and forming N2-fixing bacteroids.
Abstract: Rhizobia are some of the best-studied plant microbiota These oligotrophic Alphaproteobacteria or Betaproteobacteria form symbioses with their legume hosts Rhizobia must exist in soil and compete with other members of the microbiota before infecting legumes and forming N2-fixing bacteroids These dramatic lifestyle and developmental changes are underpinned by large genomes and even more complex pan-genomes, which encompass the whole population and are subject to rapid genetic exchange The ability to respond to plant signals and chemoattractants and to colonize nutrient-rich roots are crucial for the competitive success of these bacteria The availability of a large body of genomic, physiological, biochemical and ecological studies makes rhizobia unique models for investigating community interactions and plant colonization

329 citations