scispace - formally typeset
Search or ask a question
Author

Toshiya Watanabe

Other affiliations: Toto Ltd.
Bio: Toshiya Watanabe is an academic researcher from University of Tokyo. The author has contributed to research in topics: Photocatalysis & Contact angle. The author has an hindex of 45, co-authored 99 publications receiving 18083 citations. Previous affiliations of Toshiya Watanabe include Toto Ltd..


Papers
More filters
Journal ArticleDOI
31 Jul 1997-Nature
TL;DR: In this paper, the photogeneration of a highly amphiphilic (both hydrophilic and oleophilic) titanium dioxide surface was reported, and the unique character of this surface was ascribed to the microstructured composition of hydrophilicity of the phases, produced by ultraviolet irradiation.
Abstract: The ability to control the surface wettability of solid substrates is important in many situations. Here we report the photogeneration of a highly amphiphilic (both hydrophilic and oleophilic) titanium dioxide surface. The unique character of this surface is ascribed to the microstructured composition of hydrophilic and oleophilic phases, produced by ultraviolet irradiation. The result is a TiO2-coated glass which is antifogging and self-cleaning.

3,049 citations

Journal ArticleDOI
TL;DR: The plasmonic photocatalysis will be of use as a high performance photocatalyst in nearly all current applications but will beof particular importance for applications in locations of minimal light exposure.
Abstract: Titanium dioxide (TiO2) displays photocatalytic behavior under near-ultraviolet (UV) illumination. In another scientific field, it is well understood that the excitation of localized plasmon polaritons on the surface of silver (Ag) nanoparticles (NPs) causes a tremendous increase of the near-field amplitude at well-defined wavelengths in the near UV. The exact resonance wavelength depends on the shape and the dielectric environment of the NPs. We expected that the photocatalytic behavior of TiO2 would be greatly boosted if it gets assisted by the enhanced near-field amplitudes of localized surface plasmon (LSP). Here we show that this is true indeed. We named this new phenomenon "plasmonic photocatalysis". The key to enable plasmonic photocatalysis is to deposit TiO2 on a NP comprising an Ag core covered with a silica (SiO2) shell to prevent oxidation of Ag by direct contact with TiO2. The most appropriate diameter for Ag NPs and thickness for the SiO2 shell giving rise to LSP in the near UV were estimated from Mie scattering theory. Upon implementing a device that took these design considerations into account, the measured photocatalytic activity under near UV illumination of such a plasmonic photocatalyst, monitored by decomposition of methylene blue, was enhanced by a factor of 7. The enhancement of the photocatalytic activity increases with a decreased thickness of the SiO2 shell. The plasmonic photocatalysis will be of use as a high performance photocatalyst in nearly all current applications but will be of particular importance for applications in locations of minimal light exposure.

1,422 citations

Journal ArticleDOI
27 May 2000-Langmuir
TL;DR: In this paper, the relationship between sliding angles and contact angles on superhydrophobic surfaces with roughness was investigated and an equation was derived to describe the relationship of sliding angle and contact angle.
Abstract: Various superhydrophobic films having different surface roughnesses were prepared, and the relationships between the sliding angle, the contact angle, and the surface structure were investigated. In the highly hydrophobic region, the sliding angles of water droplets decreased with increasing contact angles. Microstructural observation revealed that surface structures that can trap air are important for the preparation of low-sliding-angle surfaces. We have also derived an equation that describes the relationship between sliding angles and contact angles on superhydrophobic surfaces with roughness. The results calculated on the basis of this equation agreed well with the experimental ones. Moreover, we have successfully prepared a transparent superhydrophobic film whose sliding angle is ∼1° for a 7 mg water droplet. On this film, there was almost no resistance to the sliding of water droplets. The film obtained satisfies the requirements of superhydrophobicity, transparency, and a low water sliding angle.

1,189 citations

Journal ArticleDOI
22 Jun 2002-Langmuir
TL;DR: In this article, the sliding behavior of water droplets over pillarlike and groove structures was investigated and a proper design of the surface with respect to shape and extent of the three-phase line is more effective than the increase of contact angles merely by decreasing the solid−water contact area.
Abstract: Hydrophobicity and sliding behavior of water droplets were investigated on various hydrophobic pillarlike and groove structures prepared on a silicon wafer by dicing and subsequently coating with fluoroalkylsilane. The dominant hydrophobicity mode was changed from Wenzel's mode to Cassie's mode at a smaller roughness than that expected from the calculation based on the sinusoidal surface by Johnson and Dettre. The effect of water intrusion on the microstructure due to droplet weight was revealed to be an important factor governing the water sliding angle on the surface. In a comparison of the sliding behavior of water droplets over pillarlike and groove structures, it was demonstrated that a proper design of the surface with respect to shape and extent of the three-phase line is more effective than the increase of contact angles merely by decreasing the solid−water contact area.

1,083 citations

Journal ArticleDOI
TL;DR: In this article, the effect of light intensity on the generation efficiency of active oxidative species was examined by measuring the fluorescence derived by the reaction with either coumarin or terephthalic acid.

1,050 citations


Cited by
More filters
Journal ArticleDOI
Ryoji Asahi1, Takeshi Morikawa1, T. Ohwaki1, Koyu Aoki1, Y. Taga1 
13 Jul 2001-Science
TL;DR: Film and powders of TiO2-x Nx have revealed an improvement over titanium dioxide (TiO2) under visible light in optical absorption and photocatalytic activity such as photodegradations of methylene blue and gaseous acetaldehyde and hydrophilicity of the film surface.
Abstract: To use solar irradiation or interior lighting efficiently, we sought a photocatalyst with high reactivity under visible light. Films and powders of TiO 2- x N x have revealed an improvement over titanium dioxide (TiO 2 ) under visible light (wavelength 2 has proven to be indispensable for band-gap narrowing and photocatalytic activity, as assessed by first-principles calculations and x-ray photoemission spectroscopy.

11,402 citations

Journal ArticleDOI
Ulrike Diebold1
TL;DR: Titanium dioxide is the most investigated single-crystalline system in the surface science of metal oxides, and the literature on rutile (1.1) and anatase surfaces is reviewed in this paper.

7,056 citations

Journal ArticleDOI
TL;DR: A review of the current progress in the area of TiO 2 photocatalysis, mainly photocatalytic air purification, sterilization and cancer therapy is discussed in this paper.
Abstract: Scientific studies on photocatalysis started about two and a half decades ago. Titanium dioxide (TiO 2 ), which is one of the most basic materials in our daily life, has emerged as an excellent photocatalyst material for environmental purification. In this review, current progress in the area of TiO 2 photocatalysis, mainly photocatalytic air purification, sterilization and cancer therapy are discussed together with some fundamental aspects. A novel photoinduced superhydrophilic phenomenon involving TiO 2 and its applications are presented.

6,802 citations

01 Jan 2008
TL;DR: A review of the current progress in the area of TiO 2 photocatalysis, mainly photocatalytic air purification, sterilization and cancer therapy is discussed in this article.
Abstract: Abstract Scientific studies on photocatalysis started about two and a half decades ago. Titanium dioxide (TiO 2 ), which is one of the most basic materials in our daily life, has emerged as an excellent photocatalyst material for environmental purification. In this review, current progress in the area of TiO 2 photocatalysis, mainly photocatalytic air purification, sterilization and cancer therapy are discussed together with some fundamental aspects. A novel photoinduced superhydrophilic phenomenon involving TiO 2 and its applications are presented.

6,294 citations