scispace - formally typeset
Search or ask a question
Author

Tracey D. Tuberville

Bio: Tracey D. Tuberville is an academic researcher from University of Georgia. The author has contributed to research in topics: Tortoise & Population. The author has an hindex of 22, co-authored 91 publications receiving 3248 citations. Previous affiliations of Tracey D. Tuberville include Savannah River National Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: Public attitudes about the need for conservation of reptiles are probably linked to concern about amphibian declines and deformities, and counts of “officially” recognized endangered and threatened species are likely to grossly underestimate the actual number of imperiled s pecies.
Abstract: A s a group [reptiles] are nei t h er ‘good ’n or ‘b ad ,’ but ia re intere s ting and unu su a l , a l t h o u gh of m i n or i m port a n ce . If t h ey should all disappe a r, it wo u l d not make mu ch differen ce one way or the other ”( Zim and Smith 1953, p. 9 ) . Fortu n a tely, this op i n i on from the Golden Gu i de Series does not persist tod ay; most people have com e to recogn i ze the va lue of both reptiles and amph i bians as an i n tegral part of n a tu ral eco s ys tems and as heralds of envi ron m ental qu a l i ty (Gibbons and Stangel 1999). In recent ye a rs , as overa ll envi ron m ental aw a reness among the p u blic has incre a s ed , con cerns have come to inclu de intere s t in the eco l ogical state of reptile and amph i bian spec i e s t h em s elves and of t h eir habi t a t s . In c re a s ed aw a reness may s tem from bet ter edu c a ti on abo ut threats to bi od ivers i ty in gen era l , and to reptiles and amph i bians in parti c u l a r, a n d po s s i bly even from an innate attracti on to these taxa ( Kell ert and Wi l s on 1993). From the perspective of many nonscientists, the two vertebrate classes comprising reptiles and amphibians, collectively referred to as the herpetofauna, are interchangeable. For example,the Boy Scout merit badge pamphlet for herpetology was called simply Reptile Study from 1926 to 1993 (Conant 1972, Gibbons 1993), and major zoos (e.g., National Zoo in Washington, DC; Zoo Atlanta; and San Diego Zoo) use only the name “reptile” to refer to the facility that houses both amphibians and reptiles. Thus, public attitudes about the need for conservation of reptiles are probably linked to concern about amphibian declines and deformities (Alford and Richards 1999, Johnson et al. 1999, Sessions et al. 1999), which have been the subject of numerous, well-documented scientific studies. Because amphibians are distributed worldwide, but herpetologists who document amphibian declines are not, it is difficult to accurately assess what portion of amphibian populations are experiencing significant declines or have already disappeared. Furthermore, the means of determining a species’ conservation status is a rigorous and time-intensive process, and therefore counts of “officially” recognized endangered and threatened species are likely to grossly underestimate the actual number of imperiled s pecies (Ta ble 1). The worl dwi de amph i bian decl i n e probl em , as it has come to be known, has garnered significant attention not only among scientists but also in the popular media and in political circles.

1,624 citations

Journal ArticleDOI
TL;DR: The postdrought success of amphibians is attributed to a combination of adult longevity, a reduction in predator abundance, and an abundance of larval food resources, demonstrating that conservation efforts can mitigate historical habitat degradation.
Abstract: Despite the continuing loss of wetland habitats and associated declines in amphibian populations, attempts to translate wetland losses into measurable losses to ecosystems have been lacking. We estimated the potential productivity from the amphibian community that would be compromised by the loss of a single isolated wetland that has been protected from most industrial, agricultural, and urban impacts for the past 54 years. We used a continuous drift fence at Ellenton Bay, a 10-ha freshwater wetland on the Savannah River Site, near Aiken, South Carolina (U.S.A.), to sample all amphibians for 1 year following a prolonged drought. Despite intensive agricultural use of the land surrounding Ellenton Bay prior to 1951, we documented 24 species and remarkably high numbers and biomass of juvenile amphibians (>360,000 individuals; >1,400 kg) produced during one breeding season. Anurans (17 species) were more abundant than salamanders (7 species), comprising 96.4% of individual captures. Most (95.9%) of the amphibian biomass came from 232095 individuals of a single species of anuran (southern leopard frog[Rana sphenocephala]). Our results revealed the resilience of an amphibian community to natural stressors and historical habitat alteration and the potential magnitude of biomass and energy transfer from isolated wetlands to surrounding terrestrial habitat. We attributed the postdrought success of amphibians to a combination of adult longevity (often >5 years), a reduction in predator abundance, and an abundance of larval food resources. Likewise, the increase of forest cover around Ellenton Bay from 60% in 2001 probably contributed to the long-term persistence of amphibians at this site. Our findings provide an optimistic counterpoint to the issue of the global decline of biological diversity by demonstrating that conservation efforts can mitigate historical habitat degradation.

259 citations

Journal ArticleDOI
TL;DR: The International Crocodilian Genomes Working Group (ICGWG) will sequence and assemble the American alligator, saltwater crocodile and Indian gharial genomes.
Abstract: The International Crocodilian Genomes Working Group (ICGWG) will sequence and assemble the American alligator (Alligator mississippiensis), saltwater crocodile (Crocodylus porosus) and Indian gharial (Gavialis gangeticus) genomes. The status of these projects and our planned analyses are described.

152 citations

Journal ArticleDOI
TL;DR: It is suggested that translocation coupled with penning will improve the likelihood of establishing self-sustaining tortoise populations and help to re-establish extirpated populations and reconnecting fragmented ones.
Abstract: Efforts to evaluate the efficacy of translocation as a conservation tool have mostly been inadequate, particularly for reptiles and amphibians, leading many biologists to discount translocation as a viable management option. Nevertheless, with two-thirds of the world's tortoise and freshwater turtle species at risk, translocation may be one of the few remaining options for re-establishing extirpated populations and reconnecting fragmented ones. We translocated 106 gopher tortoises (Gopherus polyphemus) to a protected area within the historical range but with no resident tortoises and tested the effects of penning on site fidelity and activity area size. We assigned 38 adults and subadults to one of three penning treatments (9 months, 12 months and no penning) and radio-tracked them for 2 years. Penning significantly increased site fidelity and resulted in smaller activity areas. Our data suggest that translocation coupled with penning will improve the likelihood of establishing self-sustaining tortoise populations.

141 citations

Journal ArticleDOI
TL;DR: It is found that fine‐scale spatial structure, inbreeding, degree of relatedness and possibly ontogeny shaped patterns of diversity in faecal microbiomes of gopher tortoises demonstrate the role of spatial and demographic structure in driving differentiation of gut microbiota in natural populations.
Abstract: Herbivorous vertebrates rely on complex communities of mutualistic gut bacteria to facilitate the digestion of celluloses and hemicelluloses. Gut microbes are often convergent based on diet and gut morphology across a phylogenetically diverse group of mammals. However, little is known about microbial communities of herbivorous hindgut-fermenting reptiles. Here, we investigate how factors at the individual level might constrain the composition of gut microbes in an obligate herbivorous reptile. Using multiplexed 16S rRNA gene sequencing, we characterized the faecal microbial community of a population of gopher tortoises (Gopherus polyphemus) and examined how age, genetic diversity, spatial structure and kinship influence differences among individuals. We recovered phylotypes associated with known cellulolytic function, including candidate phylum Termite Group 3, suggesting their importance for gopher tortoise digestion. Although host genetic structure did not explain variation in microbial composition and community structure, we found that fine-scale spatial structure, inbreeding, degree of relatedness and possibly ontogeny shaped patterns of diversity in faecal microbiomes of gopher tortoises. Our findings corroborate widespread convergence of faecal-associated microbes based on gut morphology and diet and demonstrate the role of spatial and demographic structure in driving differentiation of gut microbiota in natural populations.

86 citations


Cited by
More filters
Journal Article
Fumio Tajima1
30 Oct 1989-Genomics
TL;DR: It is suggested that the natural selection against large insertion/deletion is so weak that a large amount of variation is maintained in a population.

11,521 citations

Journal ArticleDOI
TL;DR: This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities and advocates continuing attempts to check species loss but urges adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods.
Abstract: Freshwater biodiversity is the over-riding conservation priority during the International Decade for Action - 'Water for Life' - 2005 to 2015. Fresh water makes up only 0.01% of the World's water and approximately 0.8% of the Earth's surface, yet this tiny fraction of global water supports at least 100000 species out of approximately 1.8 million - almost 6% of all described species. Inland waters and freshwater biodiversity constitute a valuable natural resource, in economic, cultural, aesthetic, scientific and educational terms. Their conservation and management are critical to the interests of all humans, nations and governments. Yet this precious heritage is in crisis. Fresh waters are experiencing declines in biodiversity far greater than those in the most affected terrestrial ecosystems, and if trends in human demands for water remain unaltered and species losses continue at current rates, the opportunity to conserve much of the remaining biodiversity in fresh water will vanish before the 'Water for Life' decade ends in 2015. Why is this so, and what is being done about it? This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities. We document threats to global freshwater biodiversity under five headings: overexploitation; water pollution; flow modification; destruction or degradation of habitat; and invasion by exotic species. Their combined and interacting influences have resulted in population declines and range reduction of freshwater biodiversity worldwide. Conservation of biodiversity is complicated by the landscape position of rivers and wetlands as 'receivers' of land-use effluents, and the problems posed by endemism and thus non-substitutability. In addition, in many parts of the world, fresh water is subject to severe competition among multiple human stakeholders. Protection of freshwater biodiversity is perhaps the ultimate conservation challenge because it is influenced by the upstream drainage network, the surrounding land, the riparian zone, and - in the case of migrating aquatic fauna - downstream reaches. Such prerequisites are hardly ever met. Immediate action is needed where opportunities exist to set aside intact lake and river ecosystems within large protected areas. For most of the global land surface, trade-offs between conservation of freshwater biodiversity and human use of ecosystem goods and services are necessary. We advocate continuing attempts to check species loss but, in many situations, urge adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods in order to provide a viable long-term basis for freshwater conservation. Recognition of this need will require adoption of a new paradigm for biodiversity protection and freshwater ecosystem management - one that has been appropriately termed 'reconciliation ecology'.

5,857 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on individual species and the processes threatening them, and human-perceived landscape patterns and their correlation with species and assemblages, as well as additional, stochastic threats such as habitat loss, habitat degradation, habitat isolation and habitat isolation.
Abstract: Landscape modification and habitat fragmentation are key drivers of global species loss. Their effects may be understood by focusing on: (1) individual species and the processes threatening them, and (2) human-perceived landscape patterns and their correlation with species and assemblages. Individual species may decline as a result of interacting exogenous and endogenous threats, including habitat loss, habitat degradation, habitat isolation, changes in the biology, behaviour, and interactions of species, as well as additional, stochastic threats. Human-perceived landscape patterns that are frequently correlated with species assemblages include the amount and structure of native vegetation, the prevalence of anthropogenic edges, the degree of landscape connectivity, and the structure and heterogeneity of modified areas. Extinction cascades are particularly likely to occur in landscapes with low native vegetation cover, low landscape connectivity, degraded native vegetation and intensive land use in modified areas, especially if keystone species or entire functional groups of species are lost. This review (1) demonstrates that species-oriented and pattern-oriented approaches to understanding the ecology of modified landscapes are highly complementary, (2) clarifies the links between a wide range of interconnected themes, and (3) provides clear and consistent terminology. Tangible research and management priorities are outlined that are likely to benefit the conservation of native species in modified landscapes around the world.

2,068 citations

Journal ArticleDOI
TL;DR: The results suggest that the Eastern Arc and Coastal Forests of Tanzania-Kenya, Philippines, and Polynesia-Micronesia can least afford to lose more habitat and that, if current deforestation rates continue, the Caribbean, Tropical Andes, Philippines and Me- soamerica, Sundaland, Indo-Burma, Madagascar, and Choco-Darien-Western Ecuador will lose the most habitat in the near future.
Abstract: Nearly half the world's vascular plant species and one-third of terrestrial vertebrates are endemic to 25 "hotspots" of biodiversity, each of which has at least 1500 endemic plant species. None of these hotspots have more than one-third of their pristine habitat remaining. Historically, they covered 12% of the land's sur- face, but today their intact habitat covers only 1.4% of the land. As a result of this habitat loss, we expect many of the hotspot endemics to have either become extinct or—because much of the habitat loss is recent— to be threatened with extinction. We used World Conservation Union (IUCN) Red Lists to test this expectation. Overall, between one-half and two-thirds of all threatened plants and 57% of all threatened terrestrial verte- brates are hotspot endemics. For birds and mammals, in general, predictions of extinction in the hotspots based on habitat loss match numbers of species independently judged extinct or threatened. In two classes of hotspots the match is not as close. On oceanic islands, habitat loss underestimates extinction because intro- duced species have driven extinctions beyond those caused by habitat loss on these islands. In large hotspots, conversely, habitat loss overestimates extinction, suggesting scale dependence (this effect is also apparent for plants). For reptiles, amphibians, and plants, many fewer hotspot endemics are considered threatened or ex- tinct than we would expect based on habitat loss. This mismatch is small in temperate hotspots, however, sug- gesting that many threatened endemic species in the poorly known tropical hotspots have yet to be included on the IUCN Red Lists. We then asked in which hotspots the consequences of further habitat loss (either abso- lute or given current rates of deforestation) would be most serious. Our results suggest that the Eastern Arc and Coastal Forests of Tanzania-Kenya, Philippines, and Polynesia-Micronesia can least afford to lose more habitat and that, if current deforestation rates continue, the Caribbean, Tropical Andes, Philippines, Me- soamerica, Sundaland, Indo-Burma, Madagascar, and Choco-Darien-Western Ecuador will lose the most spe- cies in the near future. Without urgent conservation intervention, we face mass extinctions in the hotspots.

1,798 citations

Journal ArticleDOI
TL;DR: The overall biomass composition of the biosphere is assembled, establishing a census of the ≈550 gigatons of carbon (Gt C) of biomass distributed among all of the kingdoms of life and shows that terrestrial biomass is about two orders of magnitude higher than marine biomass and estimate a total of ≈6 Gt C of marine biota, doubling the previous estimated quantity.
Abstract: A census of the biomass on Earth is key for understanding the structure and dynamics of the biosphere. However, a global, quantitative view of how the biomass of different taxa compare with one another is still lacking. Here, we assemble the overall biomass composition of the biosphere, establishing a census of the ≈550 gigatons of carbon (Gt C) of biomass distributed among all of the kingdoms of life. We find that the kingdoms of life concentrate at different locations on the planet; plants (≈450 Gt C, the dominant kingdom) are primarily terrestrial, whereas animals (≈2 Gt C) are mainly marine, and bacteria (≈70 Gt C) and archaea (≈7 Gt C) are predominantly located in deep subsurface environments. We show that terrestrial biomass is about two orders of magnitude higher than marine biomass and estimate a total of ≈6 Gt C of marine biota, doubling the previous estimated quantity. Our analysis reveals that the global marine biomass pyramid contains more consumers than producers, thus increasing the scope of previous observations on inverse food pyramids. Finally, we highlight that the mass of humans is an order of magnitude higher than that of all wild mammals combined and report the historical impact of humanity on the global biomass of prominent taxa, including mammals, fish, and plants.

1,714 citations