scispace - formally typeset
Search or ask a question
Author

Tracey M. Clarke

Bio: Tracey M. Clarke is an academic researcher from University College London. The author has contributed to research in topics: Organic solar cell & Acceptor. The author has an hindex of 23, co-authored 56 publications receiving 3745 citations. Previous affiliations of Tracey M. Clarke include Imperial College London & Georgia Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The backbone of a π-conjugated polymer is comprised of a linear series of overlapping pz orbitals that have formed via sp2 hybridization, thereby creating a conjugated chain of delocalized electron density, which dictates the electronic characteristics of the polymer.
Abstract: In recent years, organic solar cells utilizing π-conjugated polymers have attracted widespread interest in both the academic and, increasingly, the commercial communities. These polymers are promising in terms of their electronic properties, low cost, versatility of functionalization, thin film flexibility, and ease of processing. These factors indicate that organic solar cells, although currently producing relatively low power conversion efficiencies (∼5-7%),1–3 compared to inorganic solar cells, have the potential to compete effectively with alternative solar cell technologies. However, in order for this to be feasible, the efficiencies of organic solar cells need further improvement. This is the focus of extensive studies worldwide. The backbone of a π-conjugated polymer is comprised of a linear series of overlapping pz orbitals that have formed via sp2 hybridization, thereby creating a conjugated chain of delocalized electron density. It is the interaction of these π electrons that dictates the electronic characteristics of the polymer. The energy levels become closely spaced as the delocalization length increases, resulting in a ‘band’ structure somewhat similar to that observed in inorganic solid-state semiconductors. In contrast to the latter, however, the primary photoexcitations in conjugated polymers are bound electron-hole pairs (excitons) rather than free charge carriers; this is largely due to their low dielectric constant and the presence of significant electron-lattice interactions and electron correlation effects.4 In the absence of a mechanism to dissociate the excitons into free charge carriers, the exciton will undergo radiative and nonradiative decay, with a typical exciton lifetime in the range from 100 ps to 1 ns. Achieving efficient charge photogeneration has long been recognized as a vital challenge for molecular-based solar cells. For example, the first organic solar cells were simple single-layer devices based on the pristine polymer and two electrodes of different work function. These devices, based on a Schottky diode structure, resulted in poor photocurrent efficiency.5–7 Relatively efficient photocurrent generation in an organic device was first reported by Tang in 1986,8 employing a vacuum-deposited CuPc/ perylene derivative donor/acceptor bilayer device. The differing electron affinities (and/or ionization potentials) between these two materials created an energy offset at their interface, thereby driving exciton dissociation. However, the efficiency of such bilayer devices is limited by the requirement of exciton diffusion to the donor/acceptor interface, typically requiring film thicknesses less than the optical absorption depth. Organic materials usually exhibit exciton diffusion lengths of ∼10 nm and optical absorption depths of 100 nm, although we note significant progress is now being made with organic materials with exciton diffusion lengths comparable to or exceeding their optical absorption depth.9–12 The observation of ultrafast photoinduced electron transfer13,14 from a conjugated polymer to C60 and the * To whom correspondence should be addressed. E-mail: j.durrant@ imperial.ac.uk. Chem. Rev. 2010, 110, 6736–6767 6736

2,061 citations

Journal ArticleDOI
TL;DR: In this paper, thermal annealing of poly(3-hexylthiophene)/6,6-phenyl C 61 -butyric acid methyl ester (P3HT/PCBM) solar cells was examined.
Abstract: The function of organic solar cells is based upon charge photogeneration at donor/acceptor heterojunctions. In this paper, the origin of the improvement in short circuit current of poly(3-hexylthiophene)/6,6-phenyl C 61 -butyric acid methyl ester (P3HT/ PCBM) solar cells with thermal annealing is examined. Transient absorption spectroscopy is employed to demonstrate that thermal annealing results in an approximate two-fold increase in the yield of dissociated charges. The enhanced charge generation is correlated with a decrease in P3HT's ionization potential upon thermal annealing. These observations are in excellent quantitative agreement with a model in which efficient dissociation of the bound radical pair into free charges is dependent upon the bound radical state being thermally hot when initially generated, enabling it to overcome its coulombic binding energy. These observations provide strong evidence that the lowest unoccupied molecular orbital (LUMO) level offset of annealed P3HT/PCBM blends may be only just sufficient to drive efficient charge generation in polythiophene-based solar cells. This has important implications for current strategies to optimize organic photovoltaic device performance based upon the development of smaller optical bandgap polymers.

272 citations

Journal ArticleDOI
TL;DR: In this paper, transient spectra for poly(3hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) films and analogues of these components were analyzed as a function of blend composition, postdeposition thermal annealing, and excitation density.
Abstract: Bimolecular recombination, an important loss mechanism in organic solar cells, has been investigated using transient absorption spectroscopy for poly(3-hexylthiophene):[6,6]-phenyl C61-butyric acid methyl ester (P3HT:PCBM) films and analogues of these components. Data are analyzed as a function of blend composition, postdeposition thermal annealing, and excitation density. Comparison of transient spectra for P3HT:PCBM films with analogous films employing P3HS and PC70BM allows the assignment of the photoinduced absorption features. These decay dynamics are analyzed on the nanosecond to millisecond time scales and are shown to be in excellent agreement with a bimolecular recombination model in the presence of an exponential distribution of localized (trap) states. Thermal annealing results in an acceleration of these decay dynamics, which is assigned to a reduction in the depth of the trap states and correlated with an increase in film crystallinity. The decay dynamics are analyzed to obtain an effective r...

159 citations

Journal ArticleDOI
TL;DR: The role of interfacial energetics in influencing the separation of charge transfer states into dissociated charge carriers in organic donor/acceptor blend films is focused upon.
Abstract: In this paper we focus upon the role of interfacial energetics in influencing the separation of charge transfer states into dissociated charge carriers in organic donor/acceptor blend films. In particular, we undertake transient optical studies of films comprising regioregular poly(3-hexylthiophene) (P3HT) blended with a series of perylene-3,4:9,10-tetracarboxydiimide (PDI) electron acceptors. For this film series, we observe a close correlation between the PDI electron affinity and the efficiency of charge separation. This correlation is discussed in the context of studies of charge photogeneration for other organic donor/acceptor blend films, including other polymers, blend compositions, and the widely used electron acceptor 3′-phenyl-3′H-cyclopropa[1,9](C60-Ih)[5,6]fullerene-3′-butanoic acid methyl ester (PCBM).

141 citations

Journal ArticleDOI
TL;DR: In this article, the authors performed a comprehensive comparison of several different lifetime measurement techniques on the same device in order to assess their relative accuracy, applicability to operational devices, and utility in data analysis.
Abstract: It is important to accurately measure the charge carrier lifetime, a crucial parameter that influences the collection efficiency in organic solar cells. Five transient and small perturbation experimental techniques that measure charge carrier lifetime are applied to a device composed of the polymer PDTSiTTz blended with the fullerene PCBM: time-resolved charge extraction (TRCE), transient absorption spectroscopy (TAS), photoinduced charge extraction by linearly increasing voltage (photo-CELIV), transient photovoltage, and electrochemical impedance spectroscopy. The motivation is to perform a comprehensive comparison of several different lifetime measurement techniques on the same device in order to assess their relative accuracy, applicability to operational devices, and utility in data analysis. The techniques all produce similar charge carrier lifetimes at high charge densities, despite previous suggestions that transient methods are less accurate than small perturbation ones. At lower charge densities an increase in the apparent reaction order is observed. This may be related to surface recombination at the contacts beginning to dominate, or an inhomogeneous charge distribution. A combination of TAS and TRCE appears suitable. TAS enables the investigation of recombination mechanisms at early times since it is not limited by RC (resistance-capacitance product) or charge extraction losses. Conversely, TRCE is useful particularly at low densities when other mechanisms, such as surface recombination, may occur.

117 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Non-fullerene OSCs show great tunability in absorption spectra and electron energy levels, providing a wide range of new opportunities, and this Review highlights these opportunities made possible by NF acceptors.
Abstract: Organic solar cells (OSCs) have been dominated by donor:acceptor blends based on fullerene acceptors for over two decades. This situation has changed recently, with non-fullerene (NF) OSCs developing very quickly. The power conversion efficiencies of NF OSCs have now reached a value of over 13%, which is higher than the best fullerene-based OSCs. NF acceptors show great tunability in absorption spectra and electron energy levels, providing a wide range of new opportunities. The coexistence of low voltage losses and high current generation indicates that new regimes of device physics and photophysics are reached in these systems. This Review highlights these opportunities made possible by NF acceptors, and also discuss the challenges facing the development of NF OSCs for practical applications.

2,117 citations

Journal ArticleDOI
TL;DR: In this article, a review of π-conjugated polymeric semiconductors for organic thin-film (or field effect) transistors (OTFTs or OFETs) and bulk-heterojunction photovoltaic (or solar) cell (BHJ-OPV or OSC) applications are summarized and analyzed.
Abstract: The optoelectronic properties of polymeric semiconductor materials can be utilized for the fabrication of organic electronic and photonic devices. When key structural requirements are met, these materials exhibit unique properties such as solution processability, large charge transporting capabilities, and/or broad optical absorption. In this review recent developments in the area of π-conjugated polymeric semiconductors for organic thin-film (or field-effect) transistors (OTFTs or OFETs) and bulk-heterojunction photovoltaic (or solar) cell (BHJ-OPV or OSC) applications are summarized and analyzed.

2,076 citations

Journal ArticleDOI
TL;DR: The backbone of a π-conjugated polymer is comprised of a linear series of overlapping pz orbitals that have formed via sp2 hybridization, thereby creating a conjugated chain of delocalized electron density, which dictates the electronic characteristics of the polymer.
Abstract: In recent years, organic solar cells utilizing π-conjugated polymers have attracted widespread interest in both the academic and, increasingly, the commercial communities. These polymers are promising in terms of their electronic properties, low cost, versatility of functionalization, thin film flexibility, and ease of processing. These factors indicate that organic solar cells, although currently producing relatively low power conversion efficiencies (∼5-7%),1–3 compared to inorganic solar cells, have the potential to compete effectively with alternative solar cell technologies. However, in order for this to be feasible, the efficiencies of organic solar cells need further improvement. This is the focus of extensive studies worldwide. The backbone of a π-conjugated polymer is comprised of a linear series of overlapping pz orbitals that have formed via sp2 hybridization, thereby creating a conjugated chain of delocalized electron density. It is the interaction of these π electrons that dictates the electronic characteristics of the polymer. The energy levels become closely spaced as the delocalization length increases, resulting in a ‘band’ structure somewhat similar to that observed in inorganic solid-state semiconductors. In contrast to the latter, however, the primary photoexcitations in conjugated polymers are bound electron-hole pairs (excitons) rather than free charge carriers; this is largely due to their low dielectric constant and the presence of significant electron-lattice interactions and electron correlation effects.4 In the absence of a mechanism to dissociate the excitons into free charge carriers, the exciton will undergo radiative and nonradiative decay, with a typical exciton lifetime in the range from 100 ps to 1 ns. Achieving efficient charge photogeneration has long been recognized as a vital challenge for molecular-based solar cells. For example, the first organic solar cells were simple single-layer devices based on the pristine polymer and two electrodes of different work function. These devices, based on a Schottky diode structure, resulted in poor photocurrent efficiency.5–7 Relatively efficient photocurrent generation in an organic device was first reported by Tang in 1986,8 employing a vacuum-deposited CuPc/ perylene derivative donor/acceptor bilayer device. The differing electron affinities (and/or ionization potentials) between these two materials created an energy offset at their interface, thereby driving exciton dissociation. However, the efficiency of such bilayer devices is limited by the requirement of exciton diffusion to the donor/acceptor interface, typically requiring film thicknesses less than the optical absorption depth. Organic materials usually exhibit exciton diffusion lengths of ∼10 nm and optical absorption depths of 100 nm, although we note significant progress is now being made with organic materials with exciton diffusion lengths comparable to or exceeding their optical absorption depth.9–12 The observation of ultrafast photoinduced electron transfer13,14 from a conjugated polymer to C60 and the * To whom correspondence should be addressed. E-mail: j.durrant@ imperial.ac.uk. Chem. Rev. 2010, 110, 6736–6767 6736

2,061 citations

Journal ArticleDOI
TL;DR: Non-fullerene acceptors (NFAs) are currently a major focus of research in the development of bulk-heterojunction organic solar cells (OSCs) as mentioned in this paper.
Abstract: Non-fullerene acceptors (NFAs) are currently a major focus of research in the development of bulk-heterojunction organic solar cells (OSCs). In contrast to the widely used fullerene acceptors (FAs), the optical properties and electronic energy levels of NFAs can be readily tuned. NFA-based OSCs can also achieve greater thermal stability and photochemical stability, as well as longer device lifetimes, than their FA-based counterparts. Historically, the performance of NFA OSCs has lagged behind that of fullerene devices. However, recent developments have led to a rapid increase in power conversion efficiencies for NFA OSCs, with values now exceeding 13%, demonstrating the viability of using NFAs to replace FAs in next-generation high-performance OSCs. This Review discusses the important work that has led to this remarkable progress, focusing on the two most promising NFA classes to date: rylene diimide-based materials and materials based on fused aromatic cores with strong electron-accepting end groups. The key structure–property relationships, donor–acceptor matching criteria and aspects of device physics are discussed. Finally, we consider the remaining challenges and promising future directions for the NFA OSCs field. Non-fullerene acceptors have been widely used in organic solar cells over the past 3 years. This Review focuses on the two most promising classes of non-fullerene acceptors — rylene diimide-based materials and fused-ring electron acceptors — and discusses structure–property relationships, donor– acceptor matching criteria and device physics, as well as future research directions for the field.

1,975 citations

Journal ArticleDOI
TL;DR: The research community has made great progress in the field of bulk heterojunction (BHJ) polymer solar cells since its inception in 1995 as mentioned in this paper and the power conversion efficiency (PCE) has increased from 1% in the 1990s to over 8% just recently.
Abstract: The research on the polymer-based solar cells (PSCs) has attracted an increasing amount of attention in recent years because PSCs pose potential advantages over mainstream inorganic-based solar cells, such as significantly reduced material/fabrication costs, flexible substrates, and light weight of finished solar cells. The research community has made great progress in the field of bulk heterojunction (BHJ) polymer solar cells since its inception in 1995. The power conversion efficiency (PCE), a key parameter to assess the performance of solar cells, has increased from 1% in the 1990s to over 8% just recently. These great advances are mainly fueled by the development of conjugated polymers used as the electron-donating materials in BHJ solar cells. In this Perspective, we first briefly review the progress on the design of conjugated polymers for polymer solar cells in the past 16 years. Since a conjugated polymer can be arbitrarily divided into three constituting components—the conjugated backbone, the si...

1,403 citations