scispace - formally typeset
Search or ask a question
Author

Tracy W. Nelson

Bio: Tracy W. Nelson is an academic researcher from Brigham Young University. The author has contributed to research in topics: Friction stir welding & Welding. The author has an hindex of 32, co-authored 66 publications receiving 4084 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the grain structure, dislocation density and second phase particles in various regions including the dynamically recrystallized zone (DXZ), thermo-mechanically affected zone (TMAZ), and heat-affected zone (HAZ) of a friction stir weld aluminum alloy 7050-T651 were investigated and compared with the unaffected base metal.

934 citations

Journal ArticleDOI
TL;DR: In this paper, the microstructure evolutions during friction stir welding (FSW)/FSP has been revealed, including dDRX, grain growth, dislocation introduction, dynamic recovery (DRV), and cDRX.
Abstract: Microstructural characteristics of friction stir processed (FSP) 7075 Al samples in different regions behind the pin tool were investigated. Furthermore, the microstructure evolutions during friction stir welding (FSW)/FSP has been revealed. Multi-mechanisms, including dDRX, grain growth, dislocation introduction, dynamic recovery (DRV) and cDRX, were found to be inherent in the process at different stages. Because inhomogeneous plastic deformation was introduced by the process, individual grains in the final microstructure have undergone different evolution mechanisms. These are either from growth of initially recrystallized grains or are the result of cDRX of subgrains formed during DRV. Grains within the processed region exhibit different densities of dislocations and are in various degrees of recovery.

418 citations

Journal ArticleDOI
TL;DR: In this article, the microstructure and mechanical properties of friction stir welded SAF 2507 super duplex stainless steel were examined and high quality, full-penetration welds were successfully produced in the super-duplex stainless steel by friction stir welding (FSW) using polycrystalline cubic boron nitride (PCBN) tool.
Abstract: The microstructure and mechanical properties of friction stir (FS) welded SAF 2507 super duplex stainless steel were examined. High-quality, full-penetration welds were successfully produced in the super duplex stainless steel by friction stir welding (FSW) using polycrystalline cubic boron nitride (PCBN) tool. The base material had a microstructure consisting of the ferrite matrix with austenite islands, but FSW refined grains of the ferrite and austenite phases in the stir zone through dynamic recrystallisation. Ferrite content was held between 50 and 60% throughout the weld. The smaller grain sizes of the ferrite and austenite phases caused increase in hardness and strength within the stir zone. Welded transverse tensile specimen failed near the border between the stir zone and TMAZ at the retreating side as the weld had roughly the same strengths as the base material.

254 citations

Journal ArticleDOI
TL;DR: In this article, friction stir processing (FSP) was used to refine the grain size in commercial 7075 Al to a sub-micrometer scale (∼250 nm) and the resulting microstructural characteristics were studied.

253 citations

Journal ArticleDOI
TL;DR: In this article, an accurate 3D finite element simulation of the Friction Stir Welding (FSW) process requires a proper knowledge of both material and interface behaviors, but friction, the key phenomenon of this process is quite difficult to model and identify.
Abstract: The accurate 3D finite element simulation of the Friction Stir Welding (FSW) process requires a proper knowledge of both material and interface behaviors, but friction, the key phenomenon of this process, is quite difficult to model and identify. According to the extreme encountered conditions and the highly coupled nature of the material flow, simple tribological tests are not representative enough, so the welding process itself has been utilized in most analyses of the literature, although its complexity has led to use simplified numerical models and approaches. The recent development of more accurate 3D simulation software, which allows modeling the entire complexity of the FSW process, makes it possible to follow a much more rigorous inverse analysis (or calibration) approach. FSW trials are conducted on an Al 6061 aluminum plate with an unthreaded concave tool. Forces and tool temperatures are accurately recorded at steady welding state, for different welding speeds. The numerical simulations are based on an Arbitrary Lagrangian Eulerian (ALE) formulation that has been implemented in the Forge3® F.E. software. The main feature of the numerical approach is to accurately compute the contact and frictional surface between the plate and the tool. A first study using Norton's friction model show the great sensitivity of welding forces and tool temperatures to friction coefficients, the need to take into account the changes brought to the contact surface by slight friction variations (thanks to the ALE formulation), the possibility to get very accurate calibrations on forces, and the impossibility to properly render the tool temperature profile. On the other hand, the use of Coulomb's friction model allows obtaining realistic temperature profiles and so calibrating a friction coefficient that offers an excellent agreement with experiments, on forces as much as on tool temperatures, for various welding speeds.

216 citations


Cited by
More filters
Book
30 Mar 2007
TL;DR: Friction stir welding (FSW) is a relatively new solid-state joining process that is used to join high-strength aerospace aluminum alloys and other metallic alloys that are hard to weld by conventional fusion welding as discussed by the authors.
Abstract: Friction stir welding (FSW) is a relatively new solid-state joining process. This joining technique is energy efficient, environment friendly, and versatile. In particular, it can be used to join high-strength aerospace aluminum alloys and other metallic alloys that are hard to weld by conventional fusion welding. FSW is considered to be the most significant development in metal joining in a decade. Recently, friction stir processing (FSP) was developed for microstructural modification of metallic materials. In this review article, the current state of understanding and development of the FSW and FSP are addressed. Particular emphasis has been given to: (a) mechanisms responsible for the formation of welds and microstructural refinement, and (b) effects of FSW/FSP parameters on resultant microstructure and final mechanical properties. While the bulk of the information is related to aluminum alloys, important results are now available for other metals and alloys. At this stage, the technology diffusion has significantly outpaced the fundamental understanding of microstructural evolution and microstructure–property relationships.

4,750 citations

Journal ArticleDOI
TL;DR: In this article, the authors deal with the fundamental understanding of the process and its metallurgical consequences, focusing on heat generation, heat transfer and plastic flow during welding, elements of tool design, understanding defect formation and the structure and properties of the welded materials.

1,811 citations

Journal ArticleDOI
TL;DR: The dynamic recrystallization (DRX) phenomena occurring in different thermo-mechanical processing (TMP) conditions for various metallic materials are reviewed in this article.

1,177 citations

Journal ArticleDOI
TL;DR: In this article, the state of the art in selective laser sintering/melting (SLS/SLM) processing of aluminium powders is reviewed from different perspectives, including powder metallurgy (P/M), pulsed electric current (PECS), and laser welding of aluminium alloys.

1,172 citations

Journal ArticleDOI
TL;DR: A brief overview of the recent progress made in improving mechanical properties of nanocrystalline materials, and in quantitatively and mechanistically understanding the underlying mechanisms is presented in this paper.

994 citations