scispace - formally typeset
Search or ask a question
Author

Travis S. Barman

Bio: Travis S. Barman is an academic researcher from Lowell Observatory. The author has contributed to research in topics: Planet & Exoplanet. The author has an hindex of 39, co-authored 81 publications receiving 11693 citations. Previous affiliations of Travis S. Barman include Wichita State University & University of Georgia.


Papers
More filters
Journal ArticleDOI
28 Nov 2008-Science
TL;DR: High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units.
Abstract: Direct imaging of exoplanetary systems is a powerful technique that can reveal Jupiter-like planets in wide orbits, can enable detailed characterization of planetary atmospheres, and is a key step toward imaging Earth-like planets. Imaging detections are challenging because of the combined effect of small angular separation and large luminosity contrast between a planet and its host star. High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units. Multi-epoch data show counter clockwise orbital motion for all three imaged planets. The low luminosity of the companions and the estimated age of the system imply planetary masses between 5 and 13 times that of Jupiter. This system resembles a scaled-up version of the outer portion of our solar system.

1,966 citations

Journal ArticleDOI
TL;DR: In this article, the authors present evolutionary models for cool brown dwarfs and extra-solar giant planets and show that irradiation effects can substantially affect the radius of sub-jovian mass giant planets.
Abstract: We present evolutionary models for cool brown dwarfs and extra-solar giant planets. The models reproduce the main trends of observed methane dwarfs in near-IR color-magnitude diagrams. We also present evolutionary models for irradiated planets, coupling for the first time irradiated atmosphere profiles and inner structures. We focus on HD 209458-like systems and show that irradiation effects can substantially affect the radius of sub-jovian mass giant planets. Irradiation effects, however, cannot alone explain the large observed radius of HD 209458b. Adopting assumptions which optimise irradiation effects and taking into account the extension of the outer atmospheric layers, we still find $\\sim$ 20% discrepancy between observed and theoretical radii. An extra source of energy seems to be required to explain the observed value of the first transit planet.

1,812 citations

Journal ArticleDOI
TL;DR: In this article, the authors present evolutionary models for cool brown dwarfs and extra-solar giant planets and show that irradiation effects can substantially affect the radius of sub-jovian mass giant planets.
Abstract: We present evolutionary models for cool brown dwarfs and extra-solar giant planets. The models reproduce the main trends of observed methane dwarfs in near-IR color-magnitude diagrams. We also present evolutionary models for irradiated planets, coupling for the first time irradiated atmosphere profiles and inner structures. We focus on HD 209458-like systems and show that irradiation effects can substantially affect the radius of sub-jovian mass giant planets. Irradiation effects, however, cannot alone explain the large observed radius of HD 209458b. Adopting assumptions which optimise irradiation effects and taking into account the extension of the outer atmospheric layers, we still find $\sim$ 20% discrepancy between observed and theoretical radii. An extra source of energy seems to be required to explain the observed value of the first transit planet.

1,657 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a new table for low-temperature Rosseland and Planck mean opacities from Alexander & Ferguson, which includes more grain species and updated optical constants.
Abstract: Previous computations of low-temperature Rosseland and Planck mean opacities from Alexander & Ferguson areupdatedandexpanded.Thenewcomputationsincludeamorecompleteequationofstate(EOS)withmoregrain species and updated optical constants. Grains are now explicitly included in thermal equilibrium in the EOS calculation, which allows for a much wider range of grain compositions to be accurately included than was previously the case. The inclusion of high-temperature condensates such as Al2O3 and CaTiO3 significantly affects the total opacityoveranarrowrangeoftemperaturesbeforetheappearanceofthefirstsilicategrains.Thenewopacitytables are tabulated for temperatures ranging from 30,000 to 500 K with gas densities from 10 � 4 to 10 � 19 gc m � 3 .C omparisons with previous Rosseland mean opacity calculations are discussed. At high temperatures, the agreement with OPAL and Opacity Project is quite good. Comparisons at lower temperatures are more divergent as a result of differences in molecular and grain physics included in different calculations. The computation of Planck mean opacities performed with the opacity sampling method is shown to require a very large number of opacity sampling wavelength points; previously published results obtained with fewer wavelength points are shown to be significantly in error. Methods for requesting or obtaining the new tables are provided. Subject heading gs: atomic data — equation of state — methods: numerical — molecular data

1,273 citations

Journal ArticleDOI
TL;DR: In this paper, broad near-infrared H and K-band spectra of the young exoplanet HR8799b have been obtained using the integral field spectrograph OSIRIS, on the Keck II telescope.
Abstract: Using the integral field spectrograph OSIRIS, on the Keck II telescope, broad near-infrared H- and K-band spectra of the young exoplanet HR8799b have been obtained. In addition, six new narrowband photometric measurements have been taken across the H and K bands. These data are combined with previously published photometry for an analysis of the planet's atmospheric properties. Thick photospheric dust cloud opacity is invoked to explain the planet's red near-IR colors and relatively smooth near-IR spectrum. Strong water absorption is detected, indicating a hydrogen-rich atmosphere. Only weak CH4 absorption is detected at K band, indicating efficient vertical mixing and a disequilibrium CO/CH4 ratio at photospheric depths. The H-band spectrum has a distinct triangular shape consistent with low surface gravity. New giant planet atmosphere models are compared to these data with best-fitting bulk parameters, T eff = 1100 K ±100 and log (g) = 3.5 ± 0.5 (for solar composition). Given the observed luminosity (log L obs/L ☉ ~ – 5.1), these values correspond to a radius of 0.75 R Jup +0.17 – 0.12 and a mass of ~0.72 M Jup +2.6 – 0.6—strikingly inconsistent with interior/evolution models. Enhanced metallicity (up to ~10× that of the Sun) along with thick clouds and non-equilibrium chemistry are likely required to reproduce the complete ensemble of spectroscopic and photometric data and the low effective temperatures (<1000 K) required by the evolution models.

394 citations


Cited by
More filters
Journal ArticleDOI
19 Feb 2010-Science
TL;DR: The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars, which is the region where planetary temperatures are suitable for water to exist on a planet's surface.
Abstract: The Kepler mission was designed to determine the frequency of Earth-sized planets in and near the habitable zone of Sun-like stars. The habitable zone is the region where planetary temperatures are suitable for water to exist on a planet’s surface. During the first 6 weeks of observations, Kepler monitored 156,000 stars, and five new exoplanets with sizes between 0.37 and 1.6 Jupiter radii and orbital periods from 3.2 to 4.9 days were discovered. The density of the Neptune-sized Kepler-4b is similar to that of Neptune and GJ 436b, even though the irradiation level is 800,000 times higher. Kepler-7b is one of the lowest-density planets (~0.17 gram per cubic centimeter) yet detected. Kepler-5b, -6b, and -8b confirm the existence of planets with densities lower than those predicted for gas giant planets.

3,663 citations

Journal ArticleDOI
TL;DR: Modules for Experiments in Stellar Astrophysics (MESA) as mentioned in this paper is a suite of open source, robust, efficient, thread-safe libraries for a wide range of applications in computational stellar astrophysics.
Abstract: Stellar physics and evolution calculations enable a broad range of research in astrophysics. Modules for Experiments in Stellar Astrophysics (MESA) is a suite of open source, robust, efficient, thread-safe libraries for a wide range of applications in computational stellar astrophysics. A one-dimensional stellar evolution module, MESAstar, combines many of the numerical and physics modules for simulations of a wide range of stellar evolution scenarios ranging from very low mass to massive stars, including advanced evolutionary phases. MESAstar solves the fully coupled structure and composition equations simultaneously. It uses adaptive mesh refinement and sophisticated timestep controls, and supports shared memory parallelism based on OpenMP. State-of-the-art modules provide equation of state, opacity, nuclear reaction rates, element diffusion data, and atmosphere boundary conditions. Each module is constructed as a separate Fortran 95 library with its own explicitly defined public interface to facilitate independent development. Several detailed examples indicate the extensive verification and testing that is continuously performed and demonstrate the wide range of capabilities that MESA possesses. These examples include evolutionary tracks of very low mass stars, brown dwarfs, and gas giant planets to very old ages; the complete evolutionary track of a 1 M ☉ star from the pre-main sequence (PMS) to a cooling white dwarf; the solar sound speed profile; the evolution of intermediate-mass stars through the He-core burning phase and thermal pulses on the He-shell burning asymptotic giant branch phase; the interior structure of slowly pulsating B Stars and Beta Cepheids; the complete evolutionary tracks of massive stars from the PMS to the onset of core collapse; mass transfer from stars undergoing Roche lobe overflow; and the evolution of helium accretion onto a neutron star. MESA can be downloaded from the project Web site (http://mesa.sourceforge.net/).

3,474 citations

Journal ArticleDOI
TL;DR: Modules for Experiments in Stellar Astrophysics (MESA) as discussed by the authors is an open source software package for modeling the evolution of stellar structures and composition. But it is not suitable for large-scale systems such as supernovae.
Abstract: We substantially update the capabilities of the open source software package Modules for Experiments in Stellar Astrophysics (MESA), and its one-dimensional stellar evolution module, MESA star. Improvements in MESA star's ability to model the evolution of giant planets now extends its applicability down to masses as low as one-tenth that of Jupiter. The dramatic improvement in asteroseismology enabled by the space-based Kepler and CoRoT missions motivates our full coupling of the ADIPLS adiabatic pulsation code with MESA star. This also motivates a numerical recasting of the Ledoux criterion that is more easily implemented when many nuclei are present at non-negligible abundances. This impacts the way in which MESA star calculates semi-convective and thermohaline mixing. We exhibit the evolution of 3-8 M ? stars through the end of core He burning, the onset of He thermal pulses, and arrival on the white dwarf cooling sequence. We implement diffusion of angular momentum and chemical abundances that enable calculations of rotating-star models, which we compare thoroughly with earlier work. We introduce a new treatment of radiation-dominated envelopes that allows the uninterrupted evolution of massive stars to core collapse. This enables the generation of new sets of supernovae, long gamma-ray burst, and pair-instability progenitor models. We substantially modify the way in which MESA star solves the fully coupled stellar structure and composition equations, and we show how this has improved the scaling of MESA's calculational speed on multi-core processors. Updates to the modules for equation of state, opacity, nuclear reaction rates, and atmospheric boundary conditions are also provided. We describe the MESA Software Development Kit that packages all the required components needed to form a unified, maintained, and well-validated build environment for MESA. We also highlight a few tools developed by the community for rapid visualization of MESA star results.

2,761 citations

Journal ArticleDOI
TL;DR: The final version published in MNRAS August 2007 included significant revisions including significant revisions to the original version April 2006.
Abstract: Final published version including significant revisions. Twenty four pages, fourteen figures. Original version April 2006; final version published in MNRAS August 2007

2,562 citations

Journal ArticleDOI
TL;DR: The Dartmouth Stellar Evolution Database as mentioned in this paper is a collection of stellar evolution tracks and isochrones that spans a range of [Fe/H] from 2.5 to +0.5, [α/Fe] from 0.245 to 0.40, and initial He mass fractions from Y = 0.1 and 4 M
Abstract: The ever-expanding depth and quality of photometric and spectroscopic observations of stellar populations increase the need for theoretical models in regions of age-composition parameter space that are largely unexplored at present. Stellar evolution models that employ the most advanced physics and cover a wide range of compositions are needed to extract the most information from current observations of both resolved and unresolved stellar populations. The Dartmouth Stellar Evolution Database is a collection of stellar evolution tracks and isochrones that spans a range of [Fe/H] from –2.5 to +0.5, [α/Fe] from –0.2 to +0.8 (for [Fe/H] ≤ 0) or +0.2 (for [Fe/H] > 0), and initial He mass fractions from Y = 0.245 to 0.40. Stellar evolution tracks were computed for masses between 0.1 and 4 M☉, allowing isochrones to be generated for ages as young as 250 Myr. For the range in masses where the core He flash occurs, separate He-burning tracks were computed starting from the zero age horizontal branch. The tracks and isochrones have been transformed to the observational plane in a variety of photometric systems including standard UBV(RI)C, Stromgren uvby, SDSS ugriz, 2MASS JHKs, and HST ACS/WFC and WFPC2. The Dartmouth Stellar Evolution Database is accessible through a Web site at http://stellar.dartmouth.edu/~models/ where all tracks, isochrones, and additional files can be downloaded.

2,014 citations