scispace - formally typeset
Search or ask a question
Author

Tressie M. Stephens

Other affiliations: University of Oklahoma
Bio: Tressie M. Stephens is an academic researcher from University of Oklahoma Health Sciences Center. The author has contributed to research in topics: Transcranial magnetic stimulation & Default mode network. The author has an hindex of 1, co-authored 5 publications receiving 1 citations. Previous affiliations of Tressie M. Stephens include University of Oklahoma.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a systematic review of studies utilizing transcranial magnetic stimulation (TMS) as a treatment for patients with disorders of consciousness (DoC) was conducted. But, the authors did not identify the specific factors associated with improved outcomes.
Abstract: Background: There are few treatments with limited efficacy for patients with disorders of consciousness (DoC), such as minimally conscious and persistent vegetative state (MCS and PVS). Objective: In this meta-analysis of individual patient data (IPD), we examine studies utilizing transcranial magnetic stimulation (TMS) as a treatment in DoC to determine patient and protocol-specific factors associated with improved outcomes. Methods: We conducted a systematic review of PubMed, Ovid Medline, and Clinicaltrials.gov through April 2020 using the following terms: "minimally conscious state," or "persistent vegetative state," or "unresponsive wakefulness syndrome," or "disorders of consciousness" and "transcranial magnetic stimulation." Studies utilizing TMS as an intervention and reporting individual pre- and post-TMS Coma Recovery Scale-Revised (CRS-R) scores and subscores were included. Studies utilizing diagnostic TMS were excluded. We performed a meta-analysis at two time points to generate a pooled estimate for absolute change in CRS-R Index, and performed a second meta-analysis to determine the treatment effect of TMS using data from sham-controlled crossover studies. A linear regression model was also created using significant predictors of absolute CRS-R index change. Results: The search yielded 118 papers, of which 10 papers with 90 patients were included. Patients demonstrated a mean pooled absolute change in CRS-R Index of 2.74 (95% CI, 0.62-4.85) after one session of TMS and 5.88 (95% CI, 3.68-8.07) at last post-TMS CRS-R assessment. The standardized mean difference between real rTMS and sham was 2.82 (95% CI, -1.50 to 7.14), favoring rTMS. The linear regression model showed that patients had significantly greater CRS-R index changes if they were in MCS, had an etiology of stroke or intracranial hemorrhage, received 10 or more sessions of TMS, or if TMS was initiated within 3 months from injury. Conclusions: TMS may improve outcomes in MCS and PVS. Further evaluation with randomized, clinical trials is necessary to determine its efficacy in this patient population.

10 citations

Journal ArticleDOI
TL;DR: In this paper, a 59-year-old male patient who presented in a decreased state of consciousness due to a right frontal glioblastoma, wherein his state was not improved by a successful surgery and could not be explained by any other condition.
Abstract: Background Transcranial magnetic stimulation is a noninvasive treatment used to modulate cortical excitability. Its use over the last two decades has expanded, ranging from psychiatric disorders to traumatic brain injury and poststroke rehabilitation. Objectives We present the case of a 59-year-old male patient who presented in a decreased state of consciousness due to a right frontal glioblastoma, wherein his state was not improved by a successful surgery and could not be explained by any other condition. Due to his poor prognosis, we examine the benefits of receiving transcranial magnetic stimulation treatment to improve his akinetic mutism. Methods We utilized independent component analysis with resting-state functional magnetic resonance imaging (rsfMRI) to better understand his cortical functionality. The imaging suggested absence of the default mode network (DMN). The patient underwent five sessions of navigated intermittent theta burst stimulation to the ipsilesional inferior parietal lobule and inferior frontal gyrus, with the aim of improving his default mode network functionality. Results No other treatments resulted in an improvement of this patient's condition; however, 3 weeks following transcranial magnetic stimulation treatment, the patient was more alert and interactive, and his follow-up rsfMRI scan demonstrated a partially intact default mode network. Conclusion This case raises important questions regarding the clinical utility of transcranial magnetic stimulation to improve the connectivity of important cerebral networks and subsequent related functional recovery.

7 citations

Journal ArticleDOI
TL;DR: In this article, the authors conducted a literature search of PubMed, Embase, and Medline databases with the following terms: ‘pediatric’ and ‘giant’ AND ‘intracranial aneurysm.

1 citations

Journal ArticleDOI
TL;DR: It is demonstrated that postoperative continuous theta burst stimulation (cTBS), a patterned form of repetitive TMS, was safely tolerated in addition to current neurorehabilitation techniques in two brain tumor patients, including one patient with a history of tumor-related epilepsy.
Abstract: Background Although transcranial magnetic stimulation (TMS) has been indicated as a potential therapy for several neurologic conditions, there is little known regarding its use during the postoperative rehabilitation period in patients with brain tumors. Furthermore, seizures, a common presentation in these patients, are regarded as a major contraindication for TMS therapy. Case description We demonstrate that postoperative continuous theta burst stimulation (cTBS), a patterned form of repetitive TMS, was safely tolerated in addition to current neurorehabilitation techniques in two brain tumor patients, including one patient with a history of tumor-related epilepsy. We administered navigated 5 Hz cTBS to two patients within 48 h following awake craniotomy for tumor resection. Active motor thresholds were measured in both patients before TBS administration to determine stimulus intensity. We used resting-state fMRI to identify likely damaged networks based on postoperative deficits. This aided in TMS planning and allowed deficit targeted therapy contralateral to the lesioned network node. Both patients tolerated TBS therapy well and had no adverse effects, including posttreatment seizures, despite one patient having a history of tumor-related epilepsy. Conclusion TBS may be safe in the immediate postoperative period for patients following brain tumor resection. Additional studies are needed to quantify the efficacy of TMS in improving neurologic deficits following tumor resection.

1 citations

Journal ArticleDOI
TL;DR: In this article, a 51-year-old woman with a grade II oligodendroglioma presented in a delayed fashion following surgery with a pseudomeningocele.
Abstract: Shunt failure requiring reintervention remains a common complication of hydrocephalus treatment. Here, we report a novel cause of mechanical shunt obstruction in an adult patient: position-dependent intermittent occlusion via an infusion port catheter. A 51-year-old woman with a grade II oligodendroglioma presented in a delayed fashion following surgery with a pseudomeningocele. She underwent ventriculoperitoneal shunt placement due to communicating hydrocephalus, resolving her pseudomeningocele. Shortly thereafter, she underwent placement of a subclavian infusion port at an outside institution. Her pseudomeningocele returned. Imaging demonstrated close proximity of her port catheter to the shunt catheter overlying the clavicle. Her shunt was tapped demonstrating a patent ventricular catheter with normal pressure. She underwent shunt exploration after her pseudomeningocele did not respond to valve adjustment. Intraoperative manometry demonstrated head position-dependent distal catheter obstruction. Repeat manometry following distal catheter revision demonstrated normal runoff independent of position. Her pseudomeningocele was resolved on follow-up. To our knowledge, this is the only reported case of intermittent, position-dependent distal catheter obstruction. Shunted patients with concern for malfunction following subclavian infusion port placement should be evaluated for possible dynamic obstruction of their distal catheter when the two catheters are in close proximity along the clavicle.

Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review four concepts with detailed examples which will help us better understand post-operative cognitive outcomes and provide a guide for how to utilize connectomics to reduce cognitive morbidity following cerebral surgery.
Abstract: The surgical management of brain tumors is based on the principle that the extent of resection improves patient outcomes. Traditionally, neurosurgeons have considered that lesions in "non-eloquent" cerebrum can be more aggressively surgically managed compared to lesions in "eloquent" regions with more known functional relevance. Furthermore, advancements in multimodal imaging technologies have improved our ability to extend the rate of resection while minimizing the risk of inducing new neurologic deficits, together referred to as the "onco-functional balance." However, despite the common utilization of invasive techniques such as cortical mapping to identify eloquent tissue responsible for language and motor functions, glioma patients continue to present post-operatively with poor cognitive morbidity in higher-order functions. Such observations are likely related to the difficulty in interpreting the highly-dimensional information these technologies present to us regarding cognition in addition to our classically poor understanding of the functional and structural neuroanatomy underlying complex higher-order cognitive functions. Furthermore, reduction of the brain into isolated cortical regions without consideration of the complex, interacting brain networks which these regions function within to subserve higher-order cognition inherently prevents our successful navigation of true eloquent and non-eloquent cerebrum. Fortunately, recent large-scale movements in the neuroscience community, such as the Human Connectome Project (HCP), have provided updated neural data detailing the many intricate macroscopic connections between cortical regions which integrate and process the information underlying complex human behavior within a brain "connectome." Connectomic data can provide us better maps on how to understand convoluted cortical and subcortical relationships between tumor and human cerebrum such that neurosurgeons can begin to make more informed decisions during surgery to maximize the onco-functional balance. However, connectome-based neurosurgery and related applications for neurorehabilitation are relatively nascent and require further work moving forward to optimize our ability to add highly valuable connectomic data to our surgical armamentarium. In this manuscript, we review four concepts with detailed examples which will help us better understand post-operative cognitive outcomes and provide a guide for how to utilize connectomics to reduce cognitive morbidity following cerebral surgery.

35 citations

Journal ArticleDOI
TL;DR: The endoscopic-assisted transcortical or interhemispheric approach for butterfly glioma resection is effective in achieving a greater than 95% resection with minimal complications and should be examined further for its clinical benefits in a prospective manner.

8 citations

Journal ArticleDOI
TL;DR: These results may serve as an empiric basis for clinical translation in this region and for future study which seeks to expand the understanding of how specific neural substrates are involved in salience processing and guide subsequent human behavior.
Abstract: The salience network (SN) is a transitory mediator between active and passive states of mind. Multiple cortical areas, including the opercular, insular, and cingulate cortices have been linked in this processing, though knowledge of network connectivity has been devoid of structural specificity.

6 citations

Journal ArticleDOI
TL;DR: If the authors continue to prospectively address and manage concerns with reliable solutions and appropriate system processes in place, then they as a field may further optimize the clinical applicability and adoption of medical based AI technology moving forward.
Abstract: The healthcare field has long been promised a number of exciting and powerful applications of Artificial Intelligence (AI) to improve the quality and delivery of health care services. AI techniques, such as machine learning (ML), have proven the ability to model enormous amounts of complex data and biological phenomena in ways only imaginable with human abilities alone. As such, medical professionals, data scientists, and Big Tech companies alike have all invested substantial time, effort, and funding into these technologies with hopes that AI systems will provide rigorous and systematic interpretations of large amounts of data that can be leveraged to augment clinical judgments in real time. However, despite not being newly introduced, AI-based medical devices have more than often been limited in their true clinical impact that was originally promised or that which is likely capable, such as during the current COVID-19 pandemic. There are several common pitfalls for these technologies that if not prospectively managed or adjusted in real-time, will continue to hinder their performance in high stakes environments outside of the lab in which they were created. To address these concerns, we outline and discuss many of the problems that future developers will likely face that contribute to these failures. Specifically, we examine the field under four lenses: approach, data, method and operation. If we continue to prospectively address and manage these concerns with reliable solutions and appropriate system processes in place, then we as a field may further optimize the clinical applicability and adoption of medical based AI technology moving forward.

6 citations

Journal ArticleDOI
TL;DR: A review of the current available literature regarding uses of repetitive TMS for neuro-rehabilitation in post-operative neuro-oncologic patients is presented in this article , with minimal adverse effects and no documented seizures.
Abstract: Transcranial magnetic stimulation (TMS) is a neuromodulation technology capable of targeted stimulation and inhibition of cortical areas. Repetitive TMS (rTMS) has demonstrated efficacy in the treatment of several neuropsychiatric disorders, and novel uses of rTMS for neurorehabilitation in patients with acute and chronic neurologic deficits are being investigated. However, studies to date have primarily focused on neurorehabilitation in stroke patients, with little data supporting its use for neurorehabilitation in brain tumor patients.We performed a review of the current available literature regarding uses of rTMS for neurorehabilitation in post-operative neuro-oncologic patients.Data have demonstrated that rTMS is safe in the post-operative neuro-oncologic patient population, with minimal adverse effects and no documented seizures. The current evidence also demonstrates potential effectiveness in terms of neurorehabilitation of motor and language deficits.Although data are overall limited, both safety and effectiveness have been demonstrated for the use of rTMS for neurorehabilitation in the neuro-oncologic population. More randomized controlled trials and specific comparisons of contralateral versus ipsilateral rTMS protocols should be explored. Further work may also focus on individualized, patient-specific TMS treatment protocols for optimal functional recovery.

6 citations