scispace - formally typeset
Search or ask a question
Author

Trevor W. Robbins

Bio: Trevor W. Robbins is an academic researcher from University of Cambridge. The author has contributed to research in topics: Prefrontal cortex & Impulsivity. The author has an hindex of 231, co-authored 1137 publications receiving 164437 citations. Previous affiliations of Trevor W. Robbins include Centre national de la recherche scientifique & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: The stereotypy response with 1·5 mg/kg apomorphine was modified by the deprivation, while the stereotypyresponse was enhanced with 0·5mg/kgApomorphine, and various possible behavioural and neurochemical mechanisms were discussed.

31 citations

Journal ArticleDOI
10 Oct 1973-Nature
TL;DR: D-AMPHETAMINE produces deficits on many tasks where it is appropriate to withhold responding and decreased discriminative sensitivity to sensory clues or an inability to control responses could underlie this effect.
Abstract: D-AMPHETAMINE produces deficits on many tasks where it is appropriate to withhold responding1–5. Decreased discriminative sensitivity to sensory clues or an inability to control responses (or both of these), could underlie this effect.

31 citations

Journal ArticleDOI
TL;DR: Empirical evidence is provided for enduring AGT-induced adaptive mechanisms within the midbrain DA circuitry, which preserve some, but not all, functions, thereby casting further light on the vulnerability of these systems to environmental perturbations.

31 citations

Journal ArticleDOI
TL;DR: The findings suggest that smokers do not differ from controls in goal-directed versus habitual control, and individual differences in nicotine dependence within smokers were positively associated with habitual responding after appetitive instrumental learning.
Abstract: Introduction: Harmful behavior such as smoking may reflect a disturbance in the balance of goaldirected and habitual control. Animal models suggest that habitual control develops after prolonged substance use. In this study, we investigated whether smokers (N = 49) differ from controls (N = 46) in the regulation of goal-directed and habitual behavior. It was also investigated whether individual differences in nicotine dependence levels were associated with habitual responding. Methods: We used two different multistage instrumental learning tasks that consist of an instrumental learning phase, subsequent outcome devaluation, and a testing phase to measure the balance between goal-directed and habitual responding. The testing phases of these tasks occurred after either appetitive versus avoidance instrumental learning. The appetitive versus aversive instrumental learning stages in the two different tasks modeled positive versus negative reinforcement, respectively. Results: Smokers and nonsmoking controls did not differ on habitual versus goal-directed control in either task. Individual differences in nicotine dependence within the group of smokers, however, were positively associated with habitual responding after appetitive instrumental learning. This effect seems to be due to impaired stimulus-outcome learning, thereby hampering goal-directed task performance and tipping the balance to habitual responding. Conclusions: The current finding highlights the importance of individual differences within smokers. For future research, neuroimaging studies are suggested to further unravel the nature of the imbalance between goal-directed versus habitual control in severely dependent smokers by directly measuring activity in the corresponding brain systems. Implications: Goal-directed versus habitual behavior in substance use and addiction is highly debated. This study investigated goal-directed versus habitual control in smokers. The findings suggest that smokers do not differ from controls in goal-directed versus habitual control. Individual differences in nicotine dependence within smokers, however, were positively associated with habitual responding after appetitive instrumental learning. This effect seems to be due to impaired stimulus-outcome learning, thereby hampering goal-directed task performance and tipping the balance to habitual responding. These findings add to the ongoing debate on habitual versus goal-directed control in addiction and emphasize the importance of individual differences within smokers.

30 citations

Journal ArticleDOI
TL;DR: Using functional magnetic resonance imaging techniques and selective pharmacological tools, the ICCAM platform study aims to explore the neuropharmacology of putative relapse pathways in cocaine, alcohol, opiate dependent, and healthy individuals to inform future drug development.
Abstract: Drug and alcohol dependence are global problems with substantial societal costs. There are few treatments for relapse prevention and therefore a pressing need for further study of brain mechanisms underpinning relapse circuitry. The Imperial College Cambridge Manchester (ICCAM) platform study is an experimental medicine approach to this problem: using functional magnetic resonance imaging (fMRI) techniques and selective pharmacological tools, it aims to explore the neuropharmacology of putative relapse pathways in cocaine, alcohol, opiate dependent, and healthy individuals to inform future drug development. Addiction studies typically involve small samples because of recruitment difficulties and attrition. We established the platform in three centres to assess the feasibility of a multisite approach to address these issues. Pharmacological modulation of reward, impulsivity and emotional reactivity were investigated in a monetary incentive delay task, an inhibitory control task, and an evocative images task, using selective antagonists for µ-opioid, dopamine D3 receptor (DRD3) and neurokinin 1 (NK1) receptors (naltrexone, GSK598809, vofopitant/aprepitant), in a placebo-controlled, randomised, crossover design. In two years, 609 scans were performed, with 155 individuals scanned at baseline. Attrition was low and the majority of individuals were sufficiently motivated to complete all five sessions (n=87). We describe herein the study design, main aims, recruitment numbers, sample characteristics, and explain the test hypotheses and anticipated study outputs.

30 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The results suggest that it is important to recognize both the unity and diversity ofExecutive functions and that latent variable analysis is a useful approach to studying the organization and roles of executive functions.

12,182 citations

Journal ArticleDOI
TL;DR: Evidence for partially segregated networks of brain areas that carry out different attentional functions is reviewed, finding that one system is involved in preparing and applying goal-directed selection for stimuli and responses, and the other is specialized for the detection of behaviourally relevant stimuli.
Abstract: We review evidence for partially segregated networks of brain areas that carry out different attentional functions. One system, which includes parts of the intraparietal cortex and superior frontal cortex, is involved in preparing and applying goal-directed (top-down) selection for stimuli and responses. This system is also modulated by the detection of stimuli. The other system, which includes the temporoparietal cortex and inferior frontal cortex, and is largely lateralized to the right hemisphere, is not involved in top-down selection. Instead, this system is specialized for the detection of behaviourally relevant stimuli, particularly when they are salient or unexpected. This ventral frontoparietal network works as a 'circuit breaker' for the dorsal system, directing attention to salient events. Both attentional systems interact during normal vision, and both are disrupted in unilateral spatial neglect.

10,985 citations

Journal ArticleDOI
TL;DR: It is proposed that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them, which provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task.
Abstract: ▪ Abstract The prefrontal cortex has long been suspected to play an important role in cognitive control, in the ability to orchestrate thought and action in accordance with internal goals. Its neural basis, however, has remained a mystery. Here, we propose that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them. They provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task. We review neurophysiological, neurobiological, neuroimaging, and computational studies that support this theory and discuss its implications as well as further issues to be addressed

10,943 citations

Book ChapterDOI
TL;DR: This chapter demonstrates the functional importance of dopamine to working memory function in several ways and demonstrates that a network of brain regions, including the prefrontal cortex, is critical for the active maintenance of internal representations.
Abstract: Publisher Summary This chapter focuses on the modern notion of short-term memory, called working memory. Working memory refers to the temporary maintenance of information that was just experienced or just retrieved from long-term memory but no longer exists in the external environment. These internal representations are short-lived, but can be maintained for longer periods of time through active rehearsal strategies, and can be subjected to various operations that manipulate the information in such a way that makes it useful for goal-directed behavior. Working memory is a system that is critically important in cognition and seems necessary in the course of performing many other cognitive functions, such as reasoning, language comprehension, planning, and spatial processing. This chapter demonstrates the functional importance of dopamine to working memory function in several ways. Elucidation of the cognitive and neural mechanisms underlying human working memory is an important focus of cognitive neuroscience and neurology for much of the past decade. One conclusion that arises from research is that working memory, a faculty that enables temporary storage and manipulation of information in the service of behavioral goals, can be viewed as neither a unitary, nor a dedicated system. Data from numerous neuropsychological and neurophysiological studies in animals and humans demonstrates that a network of brain regions, including the prefrontal cortex, is critical for the active maintenance of internal representations.

10,081 citations