scispace - formally typeset
Search or ask a question
Author

Trevor W. Robbins

Bio: Trevor W. Robbins is an academic researcher from University of Cambridge. The author has contributed to research in topics: Prefrontal cortex & Impulsivity. The author has an hindex of 231, co-authored 1137 publications receiving 164437 citations. Previous affiliations of Trevor W. Robbins include Centre national de la recherche scientifique & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: Preserved responding in thevmPFC group suggests that this region is not critical for computing action-outcome contingencies to guide behaviour, and highlights a critical role for the vmPFC in supporting awareness, or metacognitive ability, during learning.

27 citations

Journal ArticleDOI
05 Aug 2013-Emotion
TL;DR: It is indicated that male and female adolescents differ in their ability to identify emotions in morphed faces containing emotional blends, and both sexes overidentified happiness and anger.
Abstract: During adolescence social relationships become increasingly important. Establishing and maintaining these relationships requires understanding of emotional stimuli, such as facial emotions. A failure to adequately interpret emotional facial expressions has previously been associated with various mental disorders that emerge during adolescence. The current study examined sex differences in emotional face processing during adolescence. Participants were adolescents (n = 1951) with a target age of 14, who completed a forced-choice emotion discrimination task. The stimuli used comprised morphed faces that contained a blend of two emotions in varying intensities (11 stimuli per set of emotions). Adolescent girls showed faster and more sensitive perception of facial emotions than boys. However, both adolescent boys and girls were most sensitive to variations in emotion intensity in faces combining happiness and sadness, and least sensitive to changes in faces comprising fear and anger. Furthermore, both sexes overidentified happiness and anger. However, the overidentification of happiness was stronger in boys. These findings were not influenced by individual differences in the level of pubertal maturation. These results indicate that male and female adolescents differ in their ability to identify emotions in morphed faces containing emotional blends. The findings provide information for clinical studies examining whether sex differences in emotional processing are related to sex differences in the prevalence of psychiatric disorders within this age group.

27 citations

Journal ArticleDOI
29 May 2018
TL;DR: It is concluded that the rodent touchscreen continuous performance task may be useful for studying prefrontal cortex function in mice and has the capability of providing meaningful links between animal and human cognitive tasks.
Abstract: Important tools in the study of prefrontal cortical-dependent executive functions are cross-species behavioural tasks with translational validity. A widely used test of executive function and attention in humans is the continuous performance task (CPT). Optimal performance in variations of this task is associated with activity along the medial wall of the prefrontal cortex, including the anterior cingulate cortex (ACC), for its essential components such as response control, target detection and processing of false alarm errors. We assess the validity of a recently developed rodent touchscreen continuous performance task (rCPT) that is analogous to typical human CPT procedures. Here we evaluate the performance of mice with quinolinic acid-induced lesions centred on the ACC in the rCPT following a range of task parameter manipulations designed to challenge attention and impulse control. Lesioned mice showed a disinhibited response profile expressed as a decreased response criterion and increased false alarm rates. ACC lesions also resulted in a milder increase in inter-trial interval responses ('ITI touches') and hit rate. Lesions did not affect discriminative sensitivity d'. The disinhibited behaviour of ACC lesioned animals was stable and not affected by the manipulation of variable task parameter manipulations designed to increase task difficulty. The results are in general agreement with human studies implicating the ACC in the processing of inappropriate responses. We conclude that the rCPT may be useful for studying prefrontal cortex function in mice and has the capability of providing meaningful links between animal and human cognitive tasks.

27 citations

Journal ArticleDOI
TL;DR: The co-modulation by CCK and dopamine of the processing of reward-related stimuli within the NAS is discussed in terms of the co- modulation of the impact of D-amphetamine upon rates of response on the CR lever.

27 citations

Journal ArticleDOI
TL;DR: The utility of atomoxetine neuroendocrine chalenge for evaluating central noradrenaline pathways, which may be of future use in neuropsychiatric patient studies, is supported.
Abstract: It has been proposed that acute hypothalamo-pituitary-adrenal (HPA) axis challenge using noradrenergic drugs may be of utility in assessing the functional integrity of central noradrenaline pathways. Atomoxetine (formerly tomoxetine) is a highly selective noradrenaline reuptake inhibitor, which has recently been licensed for the treatment of attention deficit hyperactivity disorder (ADHD). The aim of this study was to assess the effects of acute atomoxetine on salivary cortisol levels for the first time.A total of 60 healthy male volunteers received 60 mg atomoxetine, 30 mg citalopram, or placebo per os in a double-blind parallel groups design (n = 20 per group). Salivary cortisol, blood pressure and pulse rates were recorded at baseline and at +1.0, +1.5, +2.5 and +3.5 hours after capsule administration.60 mg atomoxetine led to highly significant increases in salivary cortisol and a moderate increase in pulse rate, in the absence of significant effects on blood pressure. 30 mg citalopram had no significant effects on cortisol or cardiovascular parameters. These data support the utility of atomoxetine neuroendocrine challenge for evaluating central noradrenaline pathways, which may be of future use in neuropsychiatric patient studies. Furthermore, the effects of atomoxetine on HPA axis function may have clinical implications given the use of this agent in the treatment of ADHD.

27 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The results suggest that it is important to recognize both the unity and diversity ofExecutive functions and that latent variable analysis is a useful approach to studying the organization and roles of executive functions.

12,182 citations

Journal ArticleDOI
TL;DR: Evidence for partially segregated networks of brain areas that carry out different attentional functions is reviewed, finding that one system is involved in preparing and applying goal-directed selection for stimuli and responses, and the other is specialized for the detection of behaviourally relevant stimuli.
Abstract: We review evidence for partially segregated networks of brain areas that carry out different attentional functions. One system, which includes parts of the intraparietal cortex and superior frontal cortex, is involved in preparing and applying goal-directed (top-down) selection for stimuli and responses. This system is also modulated by the detection of stimuli. The other system, which includes the temporoparietal cortex and inferior frontal cortex, and is largely lateralized to the right hemisphere, is not involved in top-down selection. Instead, this system is specialized for the detection of behaviourally relevant stimuli, particularly when they are salient or unexpected. This ventral frontoparietal network works as a 'circuit breaker' for the dorsal system, directing attention to salient events. Both attentional systems interact during normal vision, and both are disrupted in unilateral spatial neglect.

10,985 citations

Journal ArticleDOI
TL;DR: It is proposed that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them, which provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task.
Abstract: ▪ Abstract The prefrontal cortex has long been suspected to play an important role in cognitive control, in the ability to orchestrate thought and action in accordance with internal goals. Its neural basis, however, has remained a mystery. Here, we propose that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them. They provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task. We review neurophysiological, neurobiological, neuroimaging, and computational studies that support this theory and discuss its implications as well as further issues to be addressed

10,943 citations

Book ChapterDOI
TL;DR: This chapter demonstrates the functional importance of dopamine to working memory function in several ways and demonstrates that a network of brain regions, including the prefrontal cortex, is critical for the active maintenance of internal representations.
Abstract: Publisher Summary This chapter focuses on the modern notion of short-term memory, called working memory. Working memory refers to the temporary maintenance of information that was just experienced or just retrieved from long-term memory but no longer exists in the external environment. These internal representations are short-lived, but can be maintained for longer periods of time through active rehearsal strategies, and can be subjected to various operations that manipulate the information in such a way that makes it useful for goal-directed behavior. Working memory is a system that is critically important in cognition and seems necessary in the course of performing many other cognitive functions, such as reasoning, language comprehension, planning, and spatial processing. This chapter demonstrates the functional importance of dopamine to working memory function in several ways. Elucidation of the cognitive and neural mechanisms underlying human working memory is an important focus of cognitive neuroscience and neurology for much of the past decade. One conclusion that arises from research is that working memory, a faculty that enables temporary storage and manipulation of information in the service of behavioral goals, can be viewed as neither a unitary, nor a dedicated system. Data from numerous neuropsychological and neurophysiological studies in animals and humans demonstrates that a network of brain regions, including the prefrontal cortex, is critical for the active maintenance of internal representations.

10,081 citations