scispace - formally typeset
Search or ask a question
Author

Trevor W. Robbins

Bio: Trevor W. Robbins is an academic researcher from University of Cambridge. The author has contributed to research in topics: Prefrontal cortex & Impulsivity. The author has an hindex of 231, co-authored 1137 publications receiving 164437 citations. Previous affiliations of Trevor W. Robbins include Centre national de la recherche scientifique & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: It is hypothesized that drug addiction can be viewed as a transition from voluntary, recreational drug use to compulsive drug-seeking habits, neurally underpinned by a Transition from prefrontal cortical to striatal control over drug seeking and taking as well as a progression from the ventral to the dorsal striatum.
Abstract: A decade ago, we hypothesized that drug addiction can be viewed as a transition from voluntary, recreational drug use to compulsive drug-seeking habits, neurally underpinned by a transition from prefrontal cortical to striatal control over drug seeking and taking as well as a progression from the ventral to the dorsal striatum. Here, in the light of burgeoning, supportive evidence, we reconsider and elaborate this hypothesis, in particular the refinements in our understanding of ventral and dorsal striatal mechanisms underlying goal-directed and habitual drug seeking, the influence of drug-associated Pavlovian-conditioned stimuli on drug seeking and relapse, and evidence for impairments in top-down prefrontal cortical inhibitory control over this behavior. We further review animal and human studies that have begun to define etiological factors and individual differences in the propensity to become addicted to drugs, leading to the description of addiction endophenotypes, especially for cocaine addiction. We consider the prospect of novel treatments for addiction that promote abstinence from and relapse to drug use.

810 citations

Journal ArticleDOI
01 Nov 2009-Brain
TL;DR: The work suggests that the dementing process in Parkinson's disease is predictable and related to tau while frontal-executive dysfunction evolves independently with a more dopaminergic basis and better prognosis.
Abstract: Cognitive abnormalities are common in Parkinson's disease, with important social and economic implications. Factors influencing their evolution remain unclear but are crucial to the development of targeted therapeutic strategies. We have investigated the development of cognitive impairment and dementia in Parkinson's disease using a longitudinal approach in a population-representative incident cohort (CamPaIGN study, n = 126) and here present the 5-year follow-up data from this study. Our previous work has implicated two genetic factors in the development of cognitive dysfunction in Parkinson's disease, namely the genes for catechol-O-methyltransferase (COMT Val(158)Met) and microtubule-associated protein tau (MAPT) H1/H2. Here, we have explored the influence of these genes in our incident cohort and an additional cross-sectional prevalent cohort (n = 386), and investigated the effect of MAPT H1/H2 haplotypes on tau transcription in post-mortem brain samples from patients with Lewy body disease and controls. Seventeen percent of incident patients developed dementia over 5 years [incidence 38.7 (23.9-59.3) per 1000 person-years]. We have demonstrated that three baseline measures, namely, age >or=72 years, semantic fluency less than 20 words in 90 s and inability to copy an intersecting pentagons figure, are significant predictors of dementia risk, thus validating our previous findings. In combination, these factors had an odds ratio of 88 for dementia within the first 5 years from diagnosis and may reflect the syndrome of mild cognitive impairment of Parkinson's disease. Phonemic fluency and other frontally based tasks were not associated with dementia risk. MAPT H1/H1 genotype was an independent predictor of dementia risk (odds ratio = 12.1) and the H1 versus H2 haplotype was associated with a 20% increase in transcription of 4-repeat tau in Lewy body disease brains. In contrast, COMT genotype had no effect on dementia, but a significant impact on Tower of London performance, a frontostriatally based executive task, which was dynamic, such that the ability to solve this task changed with disease progression. Hence, we have identified three highly informative predictors of dementia in Parkinson's disease, which can be easily translated into the clinic, and established that MAPT H1/H1 genotype is an important risk factor with functional effects on tau transcription. Our work suggests that the dementing process in Parkinson's disease is predictable and related to tau while frontal-executive dysfunction evolves independently with a more dopaminergic basis and better prognosis.

806 citations

Journal ArticleDOI
TL;DR: It is argued that a biological approach to psychiatry based on 'neurocognitive endophenotypes', whereby changes in behavioural or cognitive processes are associated with discrete deficits in defined neural systems, has important implications for the future classification of psychiatric disorders, genetics and therapeutics.

802 citations

Journal ArticleDOI
01 Mar 2002-Brain
TL;DR: Investigation of cognitive deficits following damage to different sectors of the human prefrontal cortex found that ventral and dorsal aspects of prefrontal cortex must interact in the maintenance of rational and 'non-risky' decision making.
Abstract: Recent work has suggested an association between the orbitofrontal cortex in humans and practical decision making. The aim of this study was to investigate the profile of cognitive deficits, with particular emphasis on decision‐making processes, following damage to different sectors of the human prefrontal cortex. Patients with discrete orbitofrontal (OBF) lesions, dorsolateral (DL) lesions, dorsomedial (DM) lesions and large frontal lesions (Large) were compared with matched controls on three different decision‐making tasks: the Iowa Gambling Task and two recently developed tasks that attempt to fractionate some of the cognitive components of the Iowa task. A comprehensive battery including the assessment of recognition memory, working memory, planning ability and attentional set‐shifting was also administered. Whilst combined frontal patients were impaired on several of the tasks employed, distinct profiles emerged for each patient group. In contrast to previous data, patients with focal OBF lesions performed at control levels on the three decision‐making tasks (and the executive tasks), but showed some evidence of prolonged deliberation. DL patients showed pronounced impairment on working memory, planning, attentional shifting and the Iowa Gambling Task. DM patients were impaired at the Iowa Gambling Task and also at planning. The Large group displayed diffuse impairment, but were the only group to exhibit risky decision making. Methodological differences from previous studies of OBF patient groups are discussed, with particular attention to lesion laterality, lesion size and psychiatric presentation. Ventral and dorsal aspects of prefrontal cortex must interact in the maintenance of rational and ‘non‐risky’ decision making. Received April 11, 2001. Revised August 16, 2001. Second revision October 19, 2001. Accepted October 22, 2001

791 citations

Journal ArticleDOI
TL;DR: The argument advanced in this review is that drug addiction can be understood in terms of normal learning and memory systems of the brain which, through the actions of chronically self-administered drugs, are pathologically subverted, leading to the establishment of compulsive drug-seeking habits, strengthened by the motivational impact of drug-associated stimuli and occurring at the expense of other sources of reinforcement.

789 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The results suggest that it is important to recognize both the unity and diversity ofExecutive functions and that latent variable analysis is a useful approach to studying the organization and roles of executive functions.

12,182 citations

Journal ArticleDOI
TL;DR: Evidence for partially segregated networks of brain areas that carry out different attentional functions is reviewed, finding that one system is involved in preparing and applying goal-directed selection for stimuli and responses, and the other is specialized for the detection of behaviourally relevant stimuli.
Abstract: We review evidence for partially segregated networks of brain areas that carry out different attentional functions. One system, which includes parts of the intraparietal cortex and superior frontal cortex, is involved in preparing and applying goal-directed (top-down) selection for stimuli and responses. This system is also modulated by the detection of stimuli. The other system, which includes the temporoparietal cortex and inferior frontal cortex, and is largely lateralized to the right hemisphere, is not involved in top-down selection. Instead, this system is specialized for the detection of behaviourally relevant stimuli, particularly when they are salient or unexpected. This ventral frontoparietal network works as a 'circuit breaker' for the dorsal system, directing attention to salient events. Both attentional systems interact during normal vision, and both are disrupted in unilateral spatial neglect.

10,985 citations

Journal ArticleDOI
TL;DR: It is proposed that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them, which provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task.
Abstract: ▪ Abstract The prefrontal cortex has long been suspected to play an important role in cognitive control, in the ability to orchestrate thought and action in accordance with internal goals. Its neural basis, however, has remained a mystery. Here, we propose that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them. They provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task. We review neurophysiological, neurobiological, neuroimaging, and computational studies that support this theory and discuss its implications as well as further issues to be addressed

10,943 citations

Book ChapterDOI
TL;DR: This chapter demonstrates the functional importance of dopamine to working memory function in several ways and demonstrates that a network of brain regions, including the prefrontal cortex, is critical for the active maintenance of internal representations.
Abstract: Publisher Summary This chapter focuses on the modern notion of short-term memory, called working memory. Working memory refers to the temporary maintenance of information that was just experienced or just retrieved from long-term memory but no longer exists in the external environment. These internal representations are short-lived, but can be maintained for longer periods of time through active rehearsal strategies, and can be subjected to various operations that manipulate the information in such a way that makes it useful for goal-directed behavior. Working memory is a system that is critically important in cognition and seems necessary in the course of performing many other cognitive functions, such as reasoning, language comprehension, planning, and spatial processing. This chapter demonstrates the functional importance of dopamine to working memory function in several ways. Elucidation of the cognitive and neural mechanisms underlying human working memory is an important focus of cognitive neuroscience and neurology for much of the past decade. One conclusion that arises from research is that working memory, a faculty that enables temporary storage and manipulation of information in the service of behavioral goals, can be viewed as neither a unitary, nor a dedicated system. Data from numerous neuropsychological and neurophysiological studies in animals and humans demonstrates that a network of brain regions, including the prefrontal cortex, is critical for the active maintenance of internal representations.

10,081 citations