scispace - formally typeset
Search or ask a question
Author

Trevor W. Robbins

Bio: Trevor W. Robbins is an academic researcher from University of Cambridge. The author has contributed to research in topics: Prefrontal cortex & Impulsivity. The author has an hindex of 231, co-authored 1137 publications receiving 164437 citations. Previous affiliations of Trevor W. Robbins include Centre national de la recherche scientifique & Massachusetts Institute of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: This work has evaluated the influence of repeated early maternal separation on the responses to both primary and conditioned incentives in mature rats and found a profound attenuation of the acquisition of a conditioned anticipatory locomotor response to the presentation of food.

178 citations

Journal ArticleDOI
TL;DR: The CANTAB battery has been standardized on a large, predominantly elderly, population and validated in neurosurgical patients as well as in patients with basal ganglia disorders, Alzheimer's disease, depression, and schizophrenia and has been used to evaluate the therapeutic effects of dopaminergic and cholinergic medication in neurodegenerative disease.

177 citations

Journal ArticleDOI
01 Mar 2003-Brain
TL;DR: The finding that Huntington's disease patients with greater chorea were disinhibited is consistent with the theory that chorea arises from selective degeneration of striatal projections to the lateral globus pallidus, while the exaggerated inhibitory effect for patients with little or no chorea may be due to additional degeneration to the medial globus Pallidus.
Abstract: Masked prime tasks have shown that sensory information that has not been consciously perceived can nevertheless trigger the preactivation of a motor response. Automatic inhibitory control processes prevent such response tendencies from interfering with behaviour. The present study investigated the possibility that these inhibitory control processes are mediated by a cortico-striatal-pallidal-thalamic pathway by using a masked prime task with Huntington's disease patients (Experiment 1) and with healthy volunteers in a functional MRI (fMRI) study (Experiment 2). In the masked prime task, clearly visible left- or right-pointing target arrows are preceded by briefly presented and subsequently masked prime arrows. Participants respond quickly with a left or right key-press to each target. Trials are either compatible (prime and target pointing in the same direction) or incompatible (prime and target pointing in different directions). Prior behavioural and electrophysiological results show that automatic inhibition of the initially primed response tendency is reflected in a 'negative compatibility effect' (faster reaction times for incompatible trials than for compatible trials), and is shown to consist of three distinct processes (prime activation, response inhibition and response conflict) occurring within 300 ms. Experiment 1 tested the hypothesis that lesions of the striatum would interrupt automatic inhibitory control by studying early-stage Huntington's disease patients. Findings supported the hypothesis: there was a bimodal distribution for patients, with one-third (choreic) showing disinhibition, manifested as an absent negative compatibility effect, and two-thirds (non-choreic) showing excessive inhibition, manifested as a significantly greater negative compatibility effect than that in controls. Experiment 2 used fMRI and a region of interest (ROI) template-based method to further test the hypothesis that structures of the striatal-pallidal-thalamic pathway mediate one or more of the processes of automatic inhibitory control. Neither prime activation nor response conflict significantly engaged any ROIs, but the response inhibition process led to significant modulation of both the caudate and thalamus. Taken together, these experiments indicate a causal role for the caudate nucleus and thalamus in automatic inhibitory motor control, and the results are consistent with performance of the task requiring both direct and indirect striatal-pallidal-thalamic pathways. The finding that Huntington's disease patients with greater chorea were disinhibited is consistent with the theory that chorea arises from selective degeneration of striatal projections to the lateral globus pallidus, while the exaggerated inhibitory effect for patients with little or no chorea may be due to additional degeneration of projections to the medial globus pallidus.

177 citations

Journal ArticleDOI
TL;DR: Substantial cognitive deficits are present in ADHD, which can be remediated somewhat with current medications and which can readily be modeled in experimental animals using back-translational methodology.

177 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The results suggest that it is important to recognize both the unity and diversity ofExecutive functions and that latent variable analysis is a useful approach to studying the organization and roles of executive functions.

12,182 citations

Journal ArticleDOI
TL;DR: Evidence for partially segregated networks of brain areas that carry out different attentional functions is reviewed, finding that one system is involved in preparing and applying goal-directed selection for stimuli and responses, and the other is specialized for the detection of behaviourally relevant stimuli.
Abstract: We review evidence for partially segregated networks of brain areas that carry out different attentional functions. One system, which includes parts of the intraparietal cortex and superior frontal cortex, is involved in preparing and applying goal-directed (top-down) selection for stimuli and responses. This system is also modulated by the detection of stimuli. The other system, which includes the temporoparietal cortex and inferior frontal cortex, and is largely lateralized to the right hemisphere, is not involved in top-down selection. Instead, this system is specialized for the detection of behaviourally relevant stimuli, particularly when they are salient or unexpected. This ventral frontoparietal network works as a 'circuit breaker' for the dorsal system, directing attention to salient events. Both attentional systems interact during normal vision, and both are disrupted in unilateral spatial neglect.

10,985 citations

Journal ArticleDOI
TL;DR: It is proposed that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them, which provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task.
Abstract: ▪ Abstract The prefrontal cortex has long been suspected to play an important role in cognitive control, in the ability to orchestrate thought and action in accordance with internal goals. Its neural basis, however, has remained a mystery. Here, we propose that cognitive control stems from the active maintenance of patterns of activity in the prefrontal cortex that represent goals and the means to achieve them. They provide bias signals to other brain structures whose net effect is to guide the flow of activity along neural pathways that establish the proper mappings between inputs, internal states, and outputs needed to perform a given task. We review neurophysiological, neurobiological, neuroimaging, and computational studies that support this theory and discuss its implications as well as further issues to be addressed

10,943 citations

Book ChapterDOI
TL;DR: This chapter demonstrates the functional importance of dopamine to working memory function in several ways and demonstrates that a network of brain regions, including the prefrontal cortex, is critical for the active maintenance of internal representations.
Abstract: Publisher Summary This chapter focuses on the modern notion of short-term memory, called working memory. Working memory refers to the temporary maintenance of information that was just experienced or just retrieved from long-term memory but no longer exists in the external environment. These internal representations are short-lived, but can be maintained for longer periods of time through active rehearsal strategies, and can be subjected to various operations that manipulate the information in such a way that makes it useful for goal-directed behavior. Working memory is a system that is critically important in cognition and seems necessary in the course of performing many other cognitive functions, such as reasoning, language comprehension, planning, and spatial processing. This chapter demonstrates the functional importance of dopamine to working memory function in several ways. Elucidation of the cognitive and neural mechanisms underlying human working memory is an important focus of cognitive neuroscience and neurology for much of the past decade. One conclusion that arises from research is that working memory, a faculty that enables temporary storage and manipulation of information in the service of behavioral goals, can be viewed as neither a unitary, nor a dedicated system. Data from numerous neuropsychological and neurophysiological studies in animals and humans demonstrates that a network of brain regions, including the prefrontal cortex, is critical for the active maintenance of internal representations.

10,081 citations