scispace - formally typeset
Search or ask a question
Author

Tripti Gupta

Other affiliations: National Institutes of Health
Bio: Tripti Gupta is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Zebrafish & Mutant. The author has an hindex of 9, co-authored 13 publications receiving 3561 citations. Previous affiliations of Tripti Gupta include National Institutes of Health.
Topics: Zebrafish, Mutant, Gene, RefSeq, Reference genome

Papers
More filters
Journal ArticleDOI
TL;DR: The approach to utilizing available RNA-Seq and other data types in the authors' manual curation process for vertebrate, plant, and other species is summarized, and a new direction for prokaryotic genomes and protein name management is described.
Abstract: The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55,000 organisms (>4800 viruses, >40,000 prokaryotes and >10,000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management.

4,104 citations

Journal ArticleDOI
TL;DR: This paper showed that the bucky ball defect in zebrafish mutants precedes the loss of polarity, indicating that buc primarily controls Balbiani body formation and molecularly identified the buc gene, which is exclusively expressed in the ovary with a novel, dynamic mRNA localization pattern first detectable within the Balbianis body.

189 citations

01 Jan 2009
TL;DR: It is shown that, at the beginning of zebrafish oogenesis, the germ plasm defect in bucky ball (buc) mutants precedes the loss of polarity, indicating that Buc primarily controls Balbiani body formation.
Abstract: In many animals, gamete formation during embryogenesis is specified by maternal cytoplasmic determinants termed germ plasm. During oogenesis, germ plasm forms a distinct cellular structure such as pole plasm in Drosophila or the Balbiani body, an aggregate of organelles also found in mammals. However, in vertebrates, the key regulators of germ plasm assembly are largely unknown. Here, we show that, at the beginning of zebrafish oogenesis, the germ plasm defect in bucky ball (buc) mutants precedes the loss of polarity, indicating that Buc primarily controls Balbiani body formation. Moreover, we molecularly identify the buc gene, which is exclusively expressed in the ovary with a novel, dynamic mRNA localization pattern first detectable within the Balbiani body. We find that a Buc-GFP fusion localizes to the Balbiani body during oogenesis and with the germ plasm during early embryogenesis, consistent with a role in germ plasm formation. Interestingly, overexpression of buc seems to generate ectopic germ cells in the zebrafish embryo. Because we discovered buc homologs in many vertebrate genomes, including mammals, these results identify buc as the first gene necessary and sufficient for germ plasm organization in vertebrates.

149 citations

Journal ArticleDOI
TL;DR: This protocol will assist in the broadening of studies in the zebrafish to include the remodeling of larval organs, the morphogenesis of organs specific to the adult and other investigations of the adult organ systems.
Abstract: Over the last 20 years, the zebrafish has become a powerful model organism for understanding vertebrate development and disease. Although experimental analysis of the embryo and larva is extensive and the morphology has been well documented, descriptions of adult zebrafish anatomy and studies of development of the adult structures and organs, together with techniques for working with adults are lacking. The organs of the larva undergo significant changes in their overall structure, morphology, and anatomical location during the larval to adult transition. Externally, the transparent larva develops its characteristic adult striped pigment pattern and paired pelvic fins, while internally, the organs undergo massive growth and remodeling. In addition, the bipotential gonad primordium develops into either testis or ovary. This protocol identifies many of the organs of the adult and demonstrates methods for dissection of the brain, gonads, gastrointestinal system, heart, and kidney of the adult zebrafish. The dissected organs can be used for in situ hybridization, immunohistochemistry, histology, RNA extraction, protein analysis, and other molecular techniques. This protocol will assist in the broadening of studies in the zebrafish to include the remodeling of larval organs, the morphogenesis of organs specific to the adult and other investigations of the adult organ systems.

140 citations

Journal ArticleDOI
TL;DR: The identification of the zebrafish magellan (mgn) mutant, which exhibits a novel enlarged Balbiani body phenotype and a disruption of oocyte polarity, provides the first evidence for a role for spectraplakins in polarization of the vertebrate oocyte and egg.
Abstract: Although of fundamental importance in developmental biology, the genetic basis for the symmetry breaking events that polarize the vertebrate oocyte and egg are largely unknown. In vertebrates, the first morphological asymmetry in the oocyte is the Balbiani body, a highly conserved, transient structure found in vertebrates and invertebrates including Drosophila, Xenopus, human, and mouse. We report the identification of the zebrafish magellan (mgn) mutant, which exhibits a novel enlarged Balbiani body phenotype and a disruption of oocyte polarity. To determine the molecular identity of the mgn gene, we positionally cloned the gene, employing a novel DNA capture method to target region-specific genomic DNA of 600 kb for massively parallel sequencing. Using this technique, we were able to enrich for the genomic region linked to our mutation within one week and then identify the mutation in mgn using massively parallel sequencing. This is one of the first successful uses of genomic DNA enrichment combined with massively parallel sequencing to determine the molecular identity of a gene associated with a mutant phenotype. We anticipate that the combination of these technologies will have wide applicability for the efficient identification of mutant genes in all organisms. We identified the mutation in mgn as a deletion in the coding sequence of the zebrafish microtubule actin crosslinking factor 1 (macf1) gene. macf1 is a member of the highly conserved spectraplakin family of cytoskeletal linker proteins, which play diverse roles in polarized cells such as neurons, muscle cells, and epithelial cells. In mgn mutants, the oocyte nucleus is mislocalized; and the Balbiani body, localized mRNAs, and organelles are absent from the periphery of the oocyte, consistent with a function for macf1 in nuclear anchoring and cortical localization. These data provide the first evidence for a role for spectraplakins in polarization of the vertebrate oocyte and egg.

107 citations


Cited by
More filters
Journal ArticleDOI
Minoru Kanehisa1, Miho Furumichi1, Mao Tanabe1, Yoko Sato2, Kanae Morishima1 
TL;DR: The content has been expanded and the quality improved irrespective of whether or not the KOs appear in the three molecular network databases, and the newly introduced addendum category of the GENES database is a collection of individual proteins whose functions are experimentally characterized and from which an increasing number of KOs are defined.
Abstract: KEGG (http://www.kegg.jp/ or http://www.genome.jp/kegg/) is an encyclopedia of genes and genomes. Assigning functional meanings to genes and genomes both at the molecular and higher levels is the primary objective of the KEGG database project. Molecular-level functions are stored in the KO (KEGG Orthology) database, where each KO is defined as a functional ortholog of genes and proteins. Higher-level functions are represented by networks of molecular interactions, reactions and relations in the forms of KEGG pathway maps, BRITE hierarchies and KEGG modules. In the past the KO database was developed for the purpose of defining nodes of molecular networks, but now the content has been expanded and the quality improved irrespective of whether or not the KOs appear in the three molecular network databases. The newly introduced addendum category of the GENES database is a collection of individual proteins whose functions are experimentally characterized and from which an increasing number of KOs are defined. Furthermore, the DISEASE and DRUG databases have been improved by systematic analysis of drug labels for better integration of diseases and drugs with the KEGG molecular networks. KEGG is moving towards becoming a comprehensive knowledge base for both functional interpretation and practical application of genomic information.

5,741 citations

Journal ArticleDOI
TL;DR: The approach to utilizing available RNA-Seq and other data types in the authors' manual curation process for vertebrate, plant, and other species is summarized, and a new direction for prokaryotic genomes and protein name management is described.
Abstract: The RefSeq project at the National Center for Biotechnology Information (NCBI) maintains and curates a publicly available database of annotated genomic, transcript, and protein sequence records (http://www.ncbi.nlm.nih.gov/refseq/). The RefSeq project leverages the data submitted to the International Nucleotide Sequence Database Collaboration (INSDC) against a combination of computation, manual curation, and collaboration to produce a standard set of stable, non-redundant reference sequences. The RefSeq project augments these reference sequences with current knowledge including publications, functional features and informative nomenclature. The database currently represents sequences from more than 55,000 organisms (>4800 viruses, >40,000 prokaryotes and >10,000 eukaryotes; RefSeq release 71), ranging from a single record to complete genomes. This paper summarizes the current status of the viral, prokaryotic, and eukaryotic branches of the RefSeq project, reports on improvements to data access and details efforts to further expand the taxonomic representation of the collection. We also highlight diverse functional curation initiatives that support multiple uses of RefSeq data including taxonomic validation, genome annotation, comparative genomics, and clinical testing. We summarize our approach to utilizing available RNA-Seq and other data types in our manual curation process for vertebrate, plant, and other species, and describe a new direction for prokaryotic genomes and protein name management.

4,104 citations

Journal ArticleDOI
TL;DR: The new version of the MPI Bioinformatics Toolkit is introduced, focusing on improved features for the comprehensive analysis of proteins, as well as on promoting teaching.

1,757 citations

Journal ArticleDOI
TL;DR: Improvements make the miRTarBase one of the more comprehensively annotated, experimentally validated miRNA-target interactions databases and motivate additional miRNA research efforts.
Abstract: MicroRNAs (miRNAs) are small non-coding RNAs of approximately 22 nucleotides, which negatively regulate the gene expression at the post-transcriptional level. This study describes an update of the miRTarBase (http://miRTarBase.mbc.nctu.edu.tw/) that provides information about experimentally validated miRNA-target interactions (MTIs). The latest update of the miRTarBase expanded it to identify systematically Argonaute-miRNA-RNA interactions from 138 crosslinking and immunoprecipitation sequencing (CLIP-seq) data sets that were generated by 21 independent studies. The database contains 4966 articles, 7439 strongly validated MTIs (using reporter assays or western blots) and 348 007 MTIs from CLIP-seq. The number of MTIs in the miRTarBase has increased around 7-fold since the 2014 miRTarBase update. The miRNA and gene expression profiles from The Cancer Genome Atlas (TCGA) are integrated to provide an effective overview of this exponential growth in the miRNA experimental data. These improvements make the miRTarBase one of the more comprehensively annotated, experimentally validated miRNA-target interactions databases and motivate additional miRNA research efforts.

1,517 citations

Journal ArticleDOI
TL;DR: An updated database containing 422 517 curated MTIs from 4076 miRNAs and 23 054 target genes collected from over 8500 articles is described, which serves as more comprehensively annotated, experimentally validated miRNA-target interactions databases in the field of miRNA related research.
Abstract: MicroRNAs (miRNAs) are small non-coding RNAs of ∼ 22 nucleotides that are involved in negative regulation of mRNA at the post-transcriptional level. Previously, we developed miRTarBase which provides information about experimentally validated miRNA-target interactions (MTIs). Here, we describe an updated database containing 422 517 curated MTIs from 4076 miRNAs and 23 054 target genes collected from over 8500 articles. The number of MTIs curated by strong evidence has increased ∼1.4-fold since the last update in 2016. In this updated version, target sites validated by reporter assay that are available in the literature can be downloaded. The target site sequence can extract new features for analysis via a machine learning approach which can help to evaluate the performance of miRNA-target prediction tools. Furthermore, different ways of browsing enhance user browsing specific MTIs. With these improvements, miRTarBase serves as more comprehensively annotated, experimentally validated miRNA-target interactions databases in the field of miRNA related research. miRTarBase is available at http://miRTarBase.mbc.nctu.edu.tw/.

1,394 citations