scispace - formally typeset
Search or ask a question
Author

Tse N. Leung

Bio: Tse N. Leung is an academic researcher from The Chinese University of Hong Kong. The author has contributed to research in topics: Prenatal diagnosis & Fetus. The author has an hindex of 31, co-authored 38 publications receiving 9192 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a real-time quantitative PCR assay was developed to measure the concentration of fetal DNA in maternal plasma and serum, and the results showed that fetal DNA is present in high concentrations in maternal placenta, reaching a mean of 25.4 genome equivalents/ml (range 3.3-69.4) in early pregnancy and 292.2 genome equivalents /ml(range 76.9-769) in late pregnancy.
Abstract: Summary We have developed a real-time quantitative PCR assay to measure the concentration of fetal DNA in maternal plasma and serum. Our results show that fetal DNA is present in high concentrations in maternal plasma, reaching a mean of 25.4 genome equivalents/ml (range 3.3–69.4) in early pregnancy and 292.2 genome equivalents/ml (range 76.9–769) in late pregnancy. These concentrations correspond to 3.4% (range 0.39%–11.9%) and 6.2% (range 2.33%–11.4%) of the total plasma DNA in early and late pregnancy, respectively. Sequential follow-up study of women who conceived by in vitro fertilization shows that fetal DNA can be detected in maternal serum as early as the 7th wk of gestation and that it then increases in concentration as pregnancy progresses. These data suggest that fetal DNA can be readily detected in maternal plasma and serum and may be a valuable source of material for noninvasive prenatal diagnosis.

1,753 citations

Journal ArticleDOI
TL;DR: The rapid turnover of circulating DNA suggests that plasma DNA analysis may be less susceptible to false-positive results, which result from carryover from previous pregnancies, than is the detection of fetal cells in maternal blood; also, rapid turnover may be useful for the monitoring of feto-maternal events with rapid dynamics.
Abstract: Summary Fetal DNA has been detected in maternal plasma during pregnancy. We investigated the clearance of circulating fetal DNA after delivery, using quantitative PCR analysis of the sex-determining region Y gene as a marker for male fetuses. We analyzed plasma samples from 12 women 1–42 d after delivery of male babies and found that circulating fetal DNA was undetectable by day 1 after delivery. To obtain a higher time-resolution picture of fetal DNA clearance, we performed serial sampling of eight women, which indicated that most women (seven) had undetectable levels of circulating fetal DNA by 2 h postpartum. The mean half-life for circulating fetal DNA was 16.3 min (range 4–30 min). Plasma nucleases were found to account for only part of the clearance of plasma fetal DNA. The rapid turnover of circulating DNA suggests that plasma DNA analysis may be less susceptible to false-positive results, which result from carryover from previous pregnancies, than is the detection of fetal cells in maternal blood; also, rapid turnover may be useful for the monitoring of feto-maternal events with rapid dynamics. These results also may have implications for the study of other types of nonhost DNA in plasma, such as circulating tumor-derived and graft-derived DNA in oncology and transplant patients, respectively.

1,110 citations

Journal ArticleDOI
TL;DR: The DNA fragments in the Plasma of pregnant women are significantly longer than those in the plasma of nonpregnant women, and the maternal-derived DNA molecules are longer than the fetal-derived ones.
Abstract: Background: The discovery of fetal DNA in maternal plasma has opened up an approach for noninvasive prenatal diagnosis. Despite the rapid expansion in clinical applications, the molecular characteristics of plasma DNA in pregnant women remain unclear. Methods: We investigated the size distribution of plasma DNA in 34 nonpregnant women and 31 pregnant women, using a panel of quantitative PCR assays with different amplicon sizes targeting the leptin gene. We also determined the size distribution of fetal DNA in maternal plasma by targeting the SRY gene. Results: The median percentages of plasma DNA with size >201 bp were 57% and 14% for pregnant and nonpregnant women, respectively ( P 193 bp and >313 bp were 20% and 0%, respectively, in maternal plasma. Conclusion: Plasma DNA molecules are mainly short DNA fragments. The DNA fragments in the plasma of pregnant women are significantly longer than those in the plasma of nonpregnant women, and the maternal-derived DNA molecules are longer than the fetal-derived ones.

616 citations

Journal ArticleDOI
TL;DR: The results suggest that preeclampsia is associated with disturbances in the liberation and/or clearance mechanisms of circulating DNA and raise the possibility that measurement of circulatingDNA may prove useful as a marker for the diagnosis and/ or monitoring of preeClampsia.
Abstract: Background: There is much recent interest in the biologic and diagnostic implication of cell-free non-host DNA in the plasma and serum of human subjects. To determine if quantitative abnormalities of circulating non-host DNA may be associated with certain pathologic processes, we used circulating fetal DNA in preeclampsia as a model system. Methods: We studied 20 preeclamptic women and 20 control subjects of comparable gestational age (means, 32 and 33 weeks, respectively). Male fetal DNA in maternal serum was measured using real-time quantitative PCR for the SRY gene on the Y chromosome. Results: The imprecision (CV) of the assay was 2.7%. The median circulating fetal DNA was increased fivefold in 20 preeclamptic women compared with 20 control pregnant women (381 vs 76 genome-equivalents/mL, P <0.001). Conclusions: These observations suggest that preeclampsia is associated with disturbances in the liberation and/or clearance mechanisms of circulating DNA. These results also raise the possibility that measurement of circulating DNA may prove useful as a marker for the diagnosis and/or monitoring of preeclampsia.

482 citations

Journal ArticleDOI
TL;DR: This work achieved noninvasive prenatal diagnosis of fetal trisomy 21 by determining the ratio between alleles of a single-nucleotide polymorphism (SNP) in PLAC4 mRNA, which is transcribed from chromosome 21 and expressed by the placenta, in maternal plasma.
Abstract: Current methods for prenatal diagnosis of chromosomal aneuploidies involve the invasive sampling of fetal materials using procedures such as amniocentesis or chorionic villus sampling and constitute a finite risk to the fetus. Here, we outline a strategy for fetal chromosome dosage assessment that can be performed noninvasively through analysis of placental expressed mRNA in maternal plasma. We achieved noninvasive prenatal diagnosis of fetal trisomy 21 by determining the ratio between alleles of a single-nucleotide polymorphism (SNP) in PLAC4 mRNA, which is transcribed from chromosome 21 and expressed by the placenta, in maternal plasma. PLAC4 mRNA in maternal plasma was fetal derived and cleared after delivery. The allelic ratios in maternal plasma correlated with those in the placenta. Fetal trisomy 21 was detected noninvasively in 90% of cases and excluded in 96.5% of controls.

476 citations


Cited by
More filters
Journal Article
TL;DR: By quantitative methylation-specific PCR of the promoter region of the CDKN2A tumor suppressor gene, the fraction of plasma DNA derived from tumor cells is quantified and is consistent with the possibility that apoptotic and necrotic cells are a major source for plasma DNA in cancer patients.
Abstract: Increased levels of DNA fragments have frequently been found in the blood plasma of cancer patients. Published data suggest that only a fraction of the DNA in blood plasma is derived from cancer cells. However, it is not known how much of the circulating DNA is from cancer or from noncancer cells. By quantitative methylation-specific PCR of the promoter region of the CDKN2A tumor suppressor gene, we were able to quantify the fraction of plasma DNA derived from tumor cells. In the plasma samples of 30 unselected cancer patients, we detected quantities of tumor DNA from only 3% to as much as 93% of total circulating DNA. We investigated possible origins of nontumor DNA in the plasma and demonstrate here a contribution of T-cell DNA in a few cases only. To investigate the possibility that plasma DNA originates from apoptotic or necrotic cells, we performed studies with apoptotic (staurosporine) and necrotic (staurosporine plus oligomycin) cells in vitro and with mice after induction of apoptotic (anti-CD95) or necrotic (acetaminophen) liver injury. Increasing amounts of DNA were found to be released in the supernatants of cells and in the blood plasma samples of treated animals. A clear discrimination of apoptotic and necrotic plasma DNA was possible by gel electrophoresis. The same characteristic patterns of DNA fragments could be identified in plasma derived from different cancer patients. The data are consistent with the possibility that apoptotic and necrotic cells are a major source for plasma DNA in cancer patients.

1,980 citations

Journal ArticleDOI
TL;DR: Recent developments in RNA-seq methods have provided an even more complete characterization of RNA transcripts, including improvements in transcription start site mapping, strand-specific measurements, gene fusion detection, small RNA characterization and detection of alternative splicing events.
Abstract: In the few years since its initial application, massively parallel cDNA sequencing, or RNA-seq, has allowed many advances in the characterization and quantification of transcriptomes. Recently, several developments in RNA-seq methods have provided an even more complete characterization of RNA transcripts. These developments include improvements in transcription start site mapping, strand-specific measurements, gene fusion detection, small RNA characterization and detection of alternative splicing events. Ongoing developments promise further advances in the application of RNA-seq, particularly direct RNA sequencing and approaches that allow RNA quantification from very small amounts of cellular materials.

1,928 citations

Journal ArticleDOI
TL;DR: The ability to detect and quantify tumor mutations has proven effective in tracking tumor dynamics in real time as well as serving as a liquid biopsy that can be used for a variety of clinical and investigational applications not previously possible.
Abstract: Genotyping tumor tissue in search of somatic genetic alterations for actionable information has become routine practice in clinical oncology. Although these sequence alterations are highly informative, sampling tumor tissue has significant inherent limitations; tumor tissue is a single snapshot in time, is subject to selection bias resulting from tumor heterogeneity, and can be difficult to obtain. Cell-free fragments of DNA are shed into the bloodstream by cells undergoing apoptosis or necrosis, and the load of circulating cell-free DNA (cfDNA) correlates with tumor staging and prognosis. Moreover, recent advances in the sensitivity and accuracy of DNA analysis have allowed for genotyping of cfDNA for somatic genomic alterations found in tumors. The ability to detect and quantify tumor mutations has proven effective in tracking tumor dynamics in real time as well as serving as a liquid biopsy that can be used for a variety of clinical and investigational applications not previously possible.

1,756 citations

Journal ArticleDOI
TL;DR: The field is now in an exciting transitional period in which ctDNA analysis is beginning to be applied clinically, although there is still much to learn about the biology of cell-free DNA.
Abstract: Improvements in genomic and molecular methods are expanding the range of potential applications for circulating tumour DNA (ctDNA), both in a research setting and as a 'liquid biopsy' for cancer management. Proof-of-principle studies have demonstrated the translational potential of ctDNA for prognostication, molecular profiling and monitoring. The field is now in an exciting transitional period in which ctDNA analysis is beginning to be applied clinically, although there is still much to learn about the biology of cell-free DNA. This is an opportune time to appraise potential approaches to ctDNA analysis, and to consider their applications in personalized oncology and in cancer research.

1,630 citations

Journal ArticleDOI
15 Aug 2014-Science
TL;DR: The current understanding of the mechanisms of disease implicated in preterm labor are summarized and advances relevant to intra-amniotic infection, decidual senescence, and breakdown of maternal-fetal tolerance are reviewed.
Abstract: Preterm birth is associated with 5 to 18% of pregnancies and is a leading cause of infant morbidity and mortality. Spontaneous preterm labor, a syndrome caused by multiple pathologic processes, leads to 70% of preterm births. The prevention and the treatment of preterm labor have been long-standing challenges. We summarize the current understanding of the mechanisms of disease implicated in this condition and review advances relevant to intra-amniotic infection, decidual senescence, and breakdown of maternal-fetal tolerance. The success of progestogen treatment to prevent preterm birth in a subset of patients at risk is a cause for optimism. Solving the mystery of preterm labor, which compromises the health of future generations, is a formidable scientific challenge worthy of investment.

1,361 citations