scispace - formally typeset
Search or ask a question
Author

Tsing-Bau Chen

Other affiliations: Merck & Co.
Bio: Tsing-Bau Chen is an academic researcher from United States Military Academy. The author has contributed to research in topics: Angiotensin II & Angiotensin II receptor type 1. The author has an hindex of 24, co-authored 70 publications receiving 3676 citations. Previous affiliations of Tsing-Bau Chen include Merck & Co..


Papers
More filters
Journal ArticleDOI
TL;DR: 3-(Acylamino)-5-phenyl-2H-1,4-benzodiazepines, antagonists of the peptide hormone cholecystokinin (CCK), are described, and the method of development of these compounds is discussed in terms of its relevance to the general problem of drug discovery.
Abstract: 3-(Acylamino)-5-phenyl-2H-1,4-benzodiazepines, antagonists of the peptide hormone cholecystokinin (CCK), are described. Developed by reasoned modification of the known anxiolytic benzodiazepines, these compounds provide highly potent, orally effective ligands selective for peripheral (CCK-A) receptors, with binding affinities approaching or equaling that of the natural ligand CCK-8. The distinction between CCK-A receptors on the one hand and CNS (CCK-B), gastrin, and central benzodiazepine receptors on the other is demonstrated by using the structure-activity profiles of the new compounds. Details of the binding of these agents to CCK-A receptors are examined, and the method of development of these compounds is discussed in terms of its relevance to the general problem of drug discovery.

1,311 citations

Journal ArticleDOI
TL;DR: It is demonstrated that positive allosteric modulation of mGluR5 produces behavioral effects, suggesting that such modulation serves as a viable approach to increasing mGLUR5 activity in vivo.
Abstract: We found that 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) is a potent and selective positive allosteric modulator of the metabotropic glutamate receptor subtype 5 (mGluR5). In Chinese hamster ovary cells expressing human mGluR5, CDPPB potentiated threshold responses to glutamate in fluorometric Ca2+ assays more than 7-fold with an EC50 value of approximately 27 nM. At 1 microM, CDPPB shifted mGluR5 agonist concentration response curves to glutamate, quisqualate, and (R,S)-3,5-dihydroxyphenylglycine 3- to 9-fold to the left. At higher concentrations, CDPPB exhibited agonist-like activity on cells expressing mGluR5. No other activity was observed on any other mGluR or cell type at concentrations up to 10 microM. CDPPB had no effect on [3H]quisqualate binding to mGluR5 but did compete for binding of [3H]methoxyPEPy, an analog of the selective mGluR5 negative allosteric modulator MPEP. CDPPB was found to be brain penetrant and reversed amphetamine-induced locomotor activity and amphetamine-induced deficits in prepulse inhibition in rats, two models sensitive to antipsychotic drug treatment. These results demonstrate that positive allosteric modulation of mGluR5 produces behavioral effects, suggesting that such modulation serves as a viable approach to increasing mGluR5 activity in vivo. These effects are consistent with the hypothesis that allosteric potentiation of mGluR5 may provide a novel approach for development of antipsychotic agents.

307 citations

Journal ArticleDOI
TL;DR: Evidence that allosteric sites on GPCRs can respond to closely related ligands with a range of pharmacological activities from positive to negative modulation as well as to neutral competition of this modulation is provided.
Abstract: We have identified a family of highly selective allosteric modulators of the group I metabotropic glutamate receptor subtype 5 (mGluR5). This family of closely related analogs exerts a spectrum of effects, ranging from positive to negative allosteric modulation, and includes compounds that do not themselves modulate mGluR5 agonist activity but rather prevent other family members from exerting their modulatory effects. 3,3′-Difluorobenzaldazine (DFB) has no agonist activity, but it acts as a selective positive allosteric modulator of human and rat mGluR5. DFB potentiates threshold responses to glutamate, quisqualate, and 3,5-dihydroxyphenylglycine in fluorometric Ca2+ assays 3- to 6-fold, with EC50 values in the 2 to 5 μM range, and at 10 to 100 μM, it shifts mGluR5 agonist concentration-response curves approximately 2-fold to the left. The analog 3,3′-dimethoxybenzaldazine (DMeOB) acts as a negative modulator of mGluR5 agonist activity, with an IC50 of 3 μM in fluorometric Ca2+ assays, whereas the analog 3,3′-dichlorobenzaldazine (DCB) does not exert any apparent modulatory effect on mGluR5 activity. However, DCB seems to act as an allosteric ligand with neutral cooperativity, preventing the positive allosteric modulation of mGluRs by DFB as well as the negative modulatory effect of DMeOB. None of these analogs affects binding of [3H]quisqualate to the orthosteric (glutamate) site, but they do inhibit [3H]3-methoxy-5-(2-pyridinylethynyl)pyridine binding to the site for 2-methyl-6-(phenylethynyl)-pyridine, a previously identified negative allosteric modulator. With the use of these compounds, we provide evidence that allosteric sites on GPCRs can respond to closely related ligands with a range of pharmacological activities from positive to negative modulation as well as to neutral competition of this modulation.

213 citations

Journal ArticleDOI
TL;DR: CGRP receptor binding sites and expression of the C GRP receptor in rhesus and rat TG are demonstrated and the expression pattern of PACAP and glutamate suggests a possible interaction between the glutamatergic and CGRP system.

193 citations

Journal ArticleDOI
TL;DR: In this article, 3.3-(Acylamino)-5-phenyl-2H-1,4-benzodiazepines, antagonists of the peptide hormone cholecystokinin (CCK), are described.
Abstract: 3-(Acylamino)-5-phenyl-2H-1,4-benzodiazepines, antagonists of the peptide hormone cholecystokinin (CCK), are described. Developed by reasoned modification of the known anxiolytic benzodiazepines, these compounds provide highly potent, orally effective ligands selective for peripheral (CCK-A) receptors, with binding affinities approaching or equaling that of the natural ligand CCK-8. The distinction between CCK-A receptors on the one hand and CNS (CCK-B), gastrin, and central benzodiazepine receptors on the other is demonstrated by using the structure-activity profiles of the new compounds. Details of the binding of these agents to CCK-A receptors are examined, and the method of development of these compounds is discussed in terms of its relevance to the general problem of drug discovery.

178 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Privileged substructures are believed to achieve this through the mimicry of common protein surface elements that are responsible for binding, such as β- and gamma;-turns.
Abstract: Privileged substructures are of potentially great importance in medicinal chemistry. These scaffolds are characterized by their ability to promiscuously bind to a multitude of receptors through a variety of favorable characteristics. This may include presentation of their substituents in a spatially defined manner and perhaps also the ability to directly bind to the receptor itself, as well as exhibiting promising characteristics to aid bioavailability of the overall molecule. It is believed that some privileged substructures achieve this through the mimicry of common protein surface elements that are responsible for binding, such as β- and gamma;-turns. As a result, these structures represent a promising means by which new lead compounds may be identified.

2,620 citations

Journal ArticleDOI
TL;DR: This review traces natural products drug discovery, outlining important drugs from natural sources that revolutionized treatment of serious diseases and effective drug development depends on multidisciplinary collaborations.

2,272 citations

Journal ArticleDOI
TL;DR: Recent technological advances that help to address issues such as the lack of compatibility of traditional natural-product extract libraries with high-throughput screening and unrealized expectations from current lead-generation strategies have led to a renewed interest in natural products in drug discovery.
Abstract: Natural products and their derivatives have historically been invaluable as a source of therapeutic agents. However, in the past decade, research into natural products in the pharmaceutical industry has declined, owing to issues such as the lack of compatibility of traditional natural-product extract libraries with high-throughput screening. However, as discussed in this review, recent technological advances that help to address these issues, coupled with unrealized expectations from current lead-generation strategies, have led to a renewed interest in natural products in drug discovery.

2,254 citations

Journal ArticleDOI
TL;DR: In this Perspective, some contemporary themes exploring the role of isosteres in drug design are sampled, with an emphasis placed on tactical applications designed to solve the kinds of problems that impinge on compound optimization and the long-term success of drug candidates.
Abstract: The concept of isosterism between relatively simple chemical entities was originally contemplated by James Moir in 1909, a notion further refined by H. G. Grimm’s hydride displacement law and captured more effectively in the ideas advanced by Irving Langmuir based on experimental observations. Langmuir coined the term “isostere” and, 18 years in advance of its actual isolation and characterization, predicted that the physical properties of the then unknown ketene would resemble those of diazomethane. The emergence of bioisosteres as structurally distinct compounds recognized similarly by biological systems has its origins in a series of studies published byHans Erlenmeyer in the 1930s, who extended earlier work conducted by Karl Landsteiner. Erlenmeyer showed that antibodies were unable to discriminate between phenyl and thienyl rings or O, NH, and CH2 in the context of artificial antigens derived by reacting diazonium ions with proteins, a process that derivatized the ortho position of tyrosine, as summarized in Figure 1 The term “bioisostere” was introduced by Harris Friedman in 1950 who defined it as compounds eliciting a similar biological effect while recognizing that compounds may be isosteric but not necessarily bioisosteric. This notion anticipates that the application of bioisosterism will depend on context, relying much less on physicochemical properties as the underlying principle for biochemical mimicry. Bioisosteres are typically less than exact structural mimetics and are often more alike in biological rather than physical properties. Thus, an effective bioisostere for one biochemical application may not translate to another setting, necessitating the careful selection and tailoring of an isostere for a specific circumstance. Consequently, the design of bioisosteres frequently introduces structural changes that can be beneficial or deleterious depending on the context, with size, shape, electronic distribution, polarizability, dipole, polarity, lipophilicity, and pKa potentially playing key contributing roles in molecular recognition and mimicry. In the contemporary practice of medicinal chemistry, the development and application of bioisosteres have been adopted as a fundamental tactical approach useful to address a number of aspects associated with the design and development of drug candidates. The established utility of bioisosteres is broad in nature, extending to improving potency, enhancing selectivity, altering physical properties, reducing or redirecting metabolism, eliminating or modifying toxicophores, and acquiring novel intellectual property. In this Perspective, some contemporary themes exploring the role of isosteres in drug design are sampled, with an emphasis placed on tactical applications designed to solve the kinds of problems that impinge on compound optimization and the long-term success of drug candidates. Interesting concepts that may have been poorly effective in the context examined are captured, since the ideas may have merit in alternative circumstances. A comprehensive cataloging of bioisosteres is beyond the scope of what will be provided, although a synopsis of relevant isosteres of a particular functionality is summarized in a succinct fashion in several sections. Isosterism has also found productive application in the design and optimization of organocatalysts, and there are several examples in which functional mimicry established initially in a medicinal chemistry setting has been adopted by this community.

2,049 citations