scispace - formally typeset
Search or ask a question
Author

Tsuo K

Bio: Tsuo K is an academic researcher from Pasteur Institute. The author has contributed to research in topics: Epigenomics & DNA methylation. The author has an hindex of 1, co-authored 1 publications receiving 1 citations.

Papers
More filters
Posted ContentDOI
24 Jun 2021-bioRxiv
TL;DR: In this paper, the authors assessed how the blood DNA methylome of 958 adults is affected by genetic variation, aging, sex and 139 diverse environmental exposures, and investigated whether these effects are direct or mediated by changes in cellular composition, measured by deep immunophenotyping.
Abstract: Epigenetic changes are required for normal development and health, and can also underlie disease states; yet, the nature and respective contribution of factors that drive epigenetic variation in humans remain to be fully characterized. Here, we assessed how the blood DNA methylome of 958 adults is affected by genetic variation, aging, sex and 139 diverse environmental exposures, and investigated whether these effects are direct or mediated by changes in cellular composition, measured by deep immunophenotyping. We show that cellular heterogeneity and DNA sequence variation are the strongest predictors of DNA methylation levels. We identify latent cytomegalovirus infection as a major driver of DNA methylation variation and delineate three distinct effects of aging on DNA methylation, including increased dispersion consistent with epigenetic drift. Our rich dataset provides a unique resource for the design and interpretation of epigenetic studies and highlight critical factors in medical epigenomics studies.

6 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article , the authors reported for the first time an analysis of autosomal sex differences in DNAme using the Illumina EPIC array in human whole blood by performing a discovery and validation (n = 1171) and n = 2471) analysis.
Abstract: Sex differences are known to play a role in disease aetiology, progression and outcome. Previous studies have revealed autosomal epigenetic differences between males and females in some tissues, including differences in DNA methylation patterns. Here, we report for the first time an analysis of autosomal sex differences in DNAme using the Illumina EPIC array in human whole blood by performing a discovery (n = 1171) and validation (n = 2471) analysis.We identified and validated 396 sex-associated differentially methylated CpG sites (saDMPs) with the majority found to be female-biased CpGs (74%). These saDMP's are enriched in CpG islands and CpG shores and located preferentially at 5'UTRs, 3'UTRs and enhancers. Additionally, we identified 266 significant sex-associated differentially methylated regions overlapping genes, which have previously been shown to exhibit epigenetic sex differences, and novel genes. Transcription factor binding site enrichment revealed enrichment of transcription factors related to critical developmental processes and sex determination such as SRY and ESR1.Our study reports a reliable catalogue of sex-associated CpG sites and elucidates several characteristics of these sites using large-scale discovery and validation data sets. This resource will benefit future studies aiming to investigate sex specific epigenetic signatures and further our understanding of the role of DNA methylation in sex differences in human whole blood.

12 citations

Posted ContentDOI
09 Feb 2022-bioRxiv
TL;DR: It is shown that tBA increases with age, causes the linear aging drift of physiological state variables, reduces resilience, and drives the exponential acceleration of the risks of chronic diseases and death.
Abstract: We analyze aging signatures in the DNA-methylation and Electronic Medical Records from the UK Biobank datasets and observe that aging is driven by a large number of individually rare and independent transitions between metastable states in a vast configuration space. The compound effect of the configuration changes can be captured by a single stochastic variable, the thermodynamic biological age (tBA), tracking the entropy produced and hence the information lost in the aging process. We show that tBA increases with age, causes the linear aging drift of physiological state variables, reduces resilience, and drives the exponential acceleration of the risks of chronic diseases and death. The entropic character of the aging drift sets limits on possibilities of age-reversal. However, the universal features of configuration transitions suggest practical ways of controlling the rate of aging and thus promising the strongest possible life-extension effects.

7 citations

Posted ContentDOI
02 Sep 2021-bioRxiv
TL;DR: In this article, the authors used the Illumina EPIC array in human whole blood (n=1171) to identify 554 sex-associated differentially methylated CpG sites with the majority found to be hypermethylated in females (70%).
Abstract: Sex differences are known to play a role in disease etiology, progression and outcome. Previous studies have revealed autosomal epigenetic differences between males and females in some tissues, including differences in DNA methylation patterns. Here, we report for the first time an analysis of autosomal sex differences in DNAme using the Illumina EPIC array in human whole blood (n=1171). We identified 554 sex-associated differentially methylated CpG sites (saDMPs) with the majority found to be hypermethylated in females (70%). These saDMP’s are enriched in CpG islands and CpG shores and located preferentially at 5’UTRs, 3’UTRs and enhancers. Additionally, we identified 311 significant sex associated differentially methylated regions (saDMRs). Transcription factor binding site enrichment revealed enrichment of transcription factors related to critical developmental processes and sex determination such as SRY and SOX9. Our study reports a reliable catalogue of sex associated CpG sites and elucidates several characteristics of these sites.

7 citations

Journal ArticleDOI
TL;DR: In this article , the differences in blood DNA methylation between individuals of self-reported European and South Asian ethnicity from two UK-based cohorts: Southall and Brent Revisited and Born in Bradford.
Abstract: Abstract Ethnic differences in non-communicable disease risk have been described between individuals of South Asian and European ethnicity that are only partially explained by genetics and other known risk factors. DNA methylation is one underexplored mechanism that may explain differences in disease risk. Currently, there is little knowledge of how DNA methylation varies between South Asian and European ethnicities. This study characterised differences in blood DNA methylation between individuals of self-reported European and South Asian ethnicity from two UK-based cohorts: Southall and Brent Revisited and Born in Bradford. DNA methylation differences between ethnicities were widespread throughout the genome ( n = 16,433 CpG sites, 3.4% sites tested). Specifically, 76% of associations were attributable to ethnic differences in cell composition with fewer effects attributable to smoking and genetic variation. Ethnicity-associated CpG sites were enriched for EWAS Catalog phenotypes including metabolites. This work highlights the need to consider ethnic diversity in epigenetic research.

5 citations

Posted ContentDOI
29 Jun 2023-bioRxiv
TL;DR: In this paper , the results of mapping interaction QTLs (iQTLs) for cell type, age, and other phenotypic variables in multi-omic, longitudinal data from blood of individuals of diverse ancestries were presented.
Abstract: Bulk tissue molecular quantitative trait loci (QTLs) have been the starting point for interpreting disease-associated variants, while context-specific QTLs show particular relevance for disease. Here, we present the results of mapping interaction QTLs (iQTLs) for cell type, age, and other phenotypic variables in multi-omic, longitudinal data from blood of individuals of diverse ancestries. By modeling the interaction between genotype and estimated cell type proportions, we demonstrate that cell type iQTLs could be considered as proxies for cell type-specific QTL effects. The interpretation of age iQTLs, however, warrants caution as the moderation effect of age on the genotype and molecular phenotype association may be mediated by changes in cell type composition. Finally, we show that cell type iQTLs contribute to cell type-specific enrichment of diseases that, in combination with additional functional data, may guide future functional studies. Overall, this study highlights iQTLs to gain insights into the context-specificity of regulatory effects.

1 citations