scispace - formally typeset
Search or ask a question
Author

Tsuyoshi Kawai

Bio: Tsuyoshi Kawai is an academic researcher from Nara Institute of Science and Technology. The author has contributed to research in topics: Photochromism & Conductive polymer. The author has an hindex of 58, co-authored 488 publications receiving 14630 citations. Previous affiliations of Tsuyoshi Kawai include Academy of Sciences of Uzbekistan & Ministry of Education, Culture, Sports, Science and Technology.


Papers
More filters
Journal ArticleDOI
19 Dec 2002-Nature
TL;DR: This work uses external photostimulation to switch the fluorescence on and off from a single photochromic molecule embedded in a polymer film due to photo-isomerization of the molecule, which may eventually find application in erasable optical data-storage elements.
Abstract: The signal from a gaudy ring molecule flashes on and off as light flicks it open and shut Fluorescent properties can be useful not only for tracking individual molecules within a microenvironment, but also in molecular-scale opto-electronics Here we use external photostimulation to switch the fluorescence on and off from a single photochromic molecule embedded in a polymer film This digital response is due to photo-isomerization of the molecule, which may eventually find application in erasable optical data-storage elements

1,036 citations

Journal ArticleDOI
TL;DR: This Perspective highlights the recent experimental and theoretical developments in the field of chiral organic chromophoric systems and their self-assembly, that has produced promising results toward the enhancement of glum values in CPL.
Abstract: Circularly polarized luminescence, or CPL, is a luminescence phenomenon that provides the differential emission intensity of right and left circularly polarized light, thereby providing information on the excited state properties of the chiral molecular systems. In recent years, there has been a growing interest toward the development of organic chromophores capable of circularly polarized emission due to their potential applications in sensors, asymmetric synthesis as well as display and optical storage devices. The major drawback with organic molecules is the low dissymmetric factors exhibited by these systems. One of the recent strategies adopted for the improvement in luminescence dissymmetry of organic systems is through the controlled self-assembly of chromophores. In this Perspective, we highlight the recent experimental and theoretical developments in the field of chiral organic chromophoric systems and their self-assembly, that has produced promising results toward the enhancement of glum values ...

482 citations

Journal ArticleDOI
TL;DR: Digital on/off switching between two discrete states was observed at the single-molecule level and the "on"- and "off"-times were dependent on the power of UV and visible light.
Abstract: Photochromic reactions of diarylethene derivatives were detected at a single-molecule level by using a fluorescence technique. Fluorescent photoswitching molecules in which photochromic diarylethene and fluorescent bis(phenylethynyl)anthracene units are linked through an adamantyl spacer were synthesized, and switching of fluorescence upon irradiation with UV and visible light was followed in solution as well as on polymer films at the single-molecule level. Although in solution the fluorescence intensity gradually changed upon irradiation with UV and visible light, digital on/off switching between two discrete states was observed at the single-molecule level. The “on”- and “off”-times were dependent on the power of UV and visible light. When the power of UV and visible light was increased, the average on- and off-times became short in proportion to the reciprocal power of the light. The response-times were found to show distribution. The distribution of the on- and off-times is considered to reflect the ...

418 citations

Journal ArticleDOI
TL;DR: This work has reported the first example of chemical-stimuli-responsive CPL properties, where appropriate pyrrole β-substituents induce distorted receptor π-planes and give larger circularly polarized luminescence (CPL), which can be tuned by chemical stimuli (anions).
Abstract: Introduction of a BINOL–boron moiety to dipyrrolyldiketones as precursors of anion-responsive π-conjugated molecules results in the formation of a chiral environment in the form of anion-free receptors and anion-binding complexes. Conformation changes by inversion (flipping) of two pyrrole rings as a result of anion binding can control the chiroptical properties of the anion receptors. In particular, appropriate pyrrole β-substituents induce distorted receptor π-planes and, as a result, give larger circularly polarized luminescence (CPL), which can be tuned by chemical stimuli (anions). This is the first example of chemical-stimuli-responsive CPL properties.

348 citations


Cited by
More filters
Journal ArticleDOI
Masahiro Irie1

3,623 citations

Journal ArticleDOI
TL;DR: In this paper, a large variety of experiments reviewed in detail here contain results compatible with the theoretical predictions, including phase diagrams of manganite models, the stabilization of the charge/orbital/spin ordered half-doped correlated electronics (CE)-states, the importance of the naively small Heisenberg coupling among localized spins, the setup of accurate mean-field approximations, and the existence of a new temperature scale T∗ where clusters start forming above the Curie temperature, the presence of stripes in the system, and many others.

2,927 citations

Journal ArticleDOI
TL;DR: This critical review describes the latest developments in the sensitization of near-infrared luminescence, "soft" luminescent materials (liquid crystals, ionic liquids, ionogels), electroluminescentmaterials for organic light emitting diodes, with emphasis on white light generation, and applications in luminecent bio-sensing and bio-imaging based on time-resolved detection and multiphoton excitation.
Abstract: Recent startling interest for lanthanide luminescence is stimulated by the continuously expanding need for luminescent materials meeting the stringent requirements of telecommunication, lighting, electroluminescent devices, (bio-)analytical sensors and bio-imaging set-ups. This critical review describes the latest developments in (i) the sensitization of near-infrared luminescence, (ii) “soft” luminescent materials (liquid crystals, ionic liquids, ionogels), (iii) electroluminescent materials for organic light emitting diodes, with emphasis on white light generation, and (iv) applications in luminescent bio-sensing and bio-imaging based on time-resolved detection and multiphoton excitation (500 references).

2,895 citations

Journal ArticleDOI
30 Nov 2000-Nature
TL;DR: ‘mono-molecular’ electronics, in which a single molecule will integrate the elementary functions and interconnections required for computation, is proposed.
Abstract: The semiconductor industry has seen a remarkable miniaturization trend, driven by many scientific and technological innovations. But if this trend is to continue, and provide ever faster and cheaper computers, the size of microelectronic circuit components will soon need to reach the scale of atoms or molecules—a goal that will require conceptually new device structures. The idea that a few molecules, or even a single molecule, could be embedded between electrodes and perform the basic functions of digital electronics—rectification, amplification and storage—was first put forward in the mid-1970s. The concept is now realized for individual components, but the economic fabrication of complete circuits at the molecular level remains challenging because of the difficulty of connecting molecules to one another. A possible solution to this problem is ‘mono-molecular’ electronics, in which a single molecule will integrate the elementary functions and interconnections required for computation.

2,853 citations

Journal ArticleDOI
TL;DR: The current status of the field of organic solar cells and the important parameters to improve their performance are discussed in this paper. But, the two competitive production techniques used today are either wet solution processing or dry thermal evaporation of the organic constituents.
Abstract: Organic solar cell research has developed during the past 30 years, but especially in the last decade it has attracted scientific and economic interest triggered by a rapid increase in power conversion efficiencies. This was achieved by the introduction of new materials, improved materials engineering, and more sophisticated device structures. Today, solar power conversion efficiencies in excess of 3% have been accomplished with several device concepts. Though efficiencies of these thin-film organicdevices have not yet reached those of their inorganic counterparts (η ≈ 10–20%); the perspective of cheap production (employing, e.g., roll-to-roll processes) drives the development of organic photovoltaic devices further in a dynamic way. The two competitive production techniques used today are either wet solution processing or dry thermal evaporation of the organic constituents. The field of organic solar cells profited well from the development of light-emitting diodes based on similar technologies, which have entered the market recently. We review here the current status of the field of organic solar cells and discuss different production technologies as well as study the important parameters to improve their performance.

2,492 citations