scispace - formally typeset
Search or ask a question
Author

Tsuyoshi Sugiyama

Bio: Tsuyoshi Sugiyama is an academic researcher from Gifu Pharmaceutical University. The author has contributed to research in topics: Guanine nucleotide exchange factor & GTPase. The author has an hindex of 11, co-authored 21 publications receiving 903 citations. Previous affiliations of Tsuyoshi Sugiyama include Gifu University of Medical Science.

Papers
More filters
Journal ArticleDOI
08 Oct 2015-Cell
TL;DR: It is shown that adhesion of microbes to intestinal epithelial cells (ECs) is a critical cue for Th17 induction, and a mixture of 20 bacterial strains, which were selected and isolated from fecal samples of a patient with ulcerative colitis on the basis of their ability to cause a robust induction of Th17 cells in the mouse colon, exhibited EC-adhesive characteristics.

783 citations

Journal ArticleDOI
TL;DR: Recent advances in the evaluation of the biological activities of 10H2DA (especially immunomodulatory activities) are focused on and the molecular mechanisms underpinning these biological activities are discussed, which could lead to new therapeutic targets for the treatment of immune disorders.
Abstract: Royal jelly is a food for queen and larvae honeybees. 10-Hydroxy-trans-2-decenoic acid (10H2DA; "royal jelly acid") is the principal lipid component in royal jelly. Several pharmacological activities of 10H2DA have been reported: anti-tumor, anti-biotic, immunomodulatory, estrogenic and neurogenic. We recently revealed an inhibitory effect of 10H2DA in innate immune signals. Despite appreciable advances in studies on innate immune signals after the identification of Toll-like receptors as innate immune receptors, few studies have reported the effect of 10H2DA on innate immune signals. In this review, we focus on recent advances in the evaluation of the biological activities of 10H2DA (especially immunomodulatory activities). We also discuss the molecular mechanisms underpinning these biological activities, which could lead to new therapeutic targets for the treatment of immune disorders.

58 citations

Journal ArticleDOI
TL;DR: The ability of 10H2DA to inhibit LPS-induced nitric oxide (NO) production and inducible NO synthase (iNOS) gene transcription were inhibited by 10H 2DA, and the previous study suggest that 10 H2DA inhibits L PS- and IFN-β-induced NO production via inhibition of NF-κB activation induced by LPS or IFn-β.
Abstract: Royal jelly acid, 10-hydroxy-trans-2-decenoic acid (10H2DA), is a major lipid component of royal jelly, which is the exclusive diet of queen honeybees. Previously, we showed partial inhibition of lipopolysaccharide (LPS)-induced NF-κB activation by 10H2DA. In this study, the ability of 10H2DA to inhibit LPS-induced nitric oxide (NO) production was investigated. LPS-induced NO production and inducible NO synthase (iNOS) gene transcription were inhibited by 10H2DA. LPS-stimulated interferon (IFN)-β production, IFN regulatory factor-1 induction and IFN-stimulated response element activation, which are required for iNOS induction, were unaffected by 10H2DA. IFN-β-induced NO production, however, was significantly inhibited by 10H2DA. Furthermore, IFN-β-induced nuclear factor (NF)-κB activation and tumour necrosis factor (TNF)-α production were significantly inhibited by 10H2DA, and TNF-α-induced NF-κB activation was also inhibited by 10H2DA. These results and our previous study suggest that 10H2DA inhibits LPS- and IFN-β-induced NO production via inhibition of NF-κB activation induced by LPS or IFN-β.

36 citations

Journal ArticleDOI
TL;DR: The results suggest that 10H2DA is one of the components of royal jelly to show anti-inflammatory effects and could be a therapeutic drug candidate for inflammatory and autoimmune diseases associated with IκB-ζ and IL-6 production.
Abstract: The effect of 10-hydroxy-trans-2-decenoic acid (10H2DA), a major fatty acid component of royal jelly, was investigated on LPS-induced cytokine production in murine macrophage cell line, RAW264 cells. 10H2DA inhibited LPS-induced IL-6 production dose-dependently, but did not inhibit TNF-α production. 10H2DA inhibited LPS-induced NF-κB activation in a dose-dependent fashion. In addition, NF-κB activation induced by over-expression of either MyD88 or Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF) was also inhibited by 10H2DA. Degradation of IκB-α and phosphorylation of IκB kinase-α were not inhibited by 10H2DA. On the other hand, reduction of LPS-induced IκB-ζ expression was discovered. Production of lipocalin-2 and granulocyte colony-stimulating factor (G-CSF), which is dependent on IκB-ζ, was also inhibited by 10H2DA, whereas that of IκB-ζ–independent cytokines/chemokines, such as IFN-β, murine monocyte chemotactic protein-1 (JE), macrophage inflammatory protein (MIP)-1α and MIP-2, was ...

34 citations

Journal ArticleDOI
TL;DR: The artificial Gb3 copolymer could neutralize Stx‐1 and the more clinically relevant Stx•2 in vitro and effectively inhibit Stx toxicity in vivo and prevented death in mice lethally infected with StX‐1‐ and Stx-2‐producing E. coli O157:H7.
Abstract: Shiga toxin (Stx) is one of the most critical factors in the development of hemolytic uremic syndrome and other systemic complications following enterohemorrhagic Escherichia coli (EHEC) infection. Substances neutralizing Stx by interfering with toxin-receptor binding have been explored as therapeutic candidates for EHEC infection. In this study, we examined globotriaosyl (Gb3), galabiosyl (Gb2) and galacto-trehalose, each of which was synthetically conjugated with a polyacrylamide backbone, for Stxneutralizing activity. Galacto-trehalose was designed as a Gb2 mimicking, unnatural Stx-ligand that was expected to show tolerance to enzymatic degradation in vivo. Galacto-trehalose copolymer showed neutralizing activity against Stx-1 but not Stx-2 in a HeLa cell cytotoxicity assay. It was thought that galactotrehalose copolymer could be a lead compound for the treatment of Stx-mediated diseases, although it requires modification to show neutralizing activity to Stx-2. The Gb3 copolymer with high sugar unit density showed stronger neutralizing activity against Stx-2 than those with lower density. However, the density-dependency of the neutralizing activity was less obvious against Stx-1. Intravenous administration of the Gb3 copolymer prevented death in mice lethally infected with Stx-1- and Stx-2-producing E. coli O157:H7. Thus, we demonstrated that the artificial Gb3 copolymer could neutralize Stx-1 and the more clinically relevant Stx-2 in vitro and effectively inhibit Stx toxicity in vivo.

31 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review features of microbiome-immunity crosstalk and their roles in health and disease, while providing examples of molecular mechanisms orchestrating these interactions in the intestine and extra-intestinal organs.
Abstract: The interplay between the commensal microbiota and the mammalian immune system development and function includes multifold interactions in homeostasis and disease. The microbiome plays critical roles in the training and development of major components of the host’s innate and adaptive immune system, while the immune system orchestrates the maintenance of key features of host-microbe symbiosis. In a genetically susceptible host, imbalances in microbiota-immunity interactions under defined environmental contexts are believed to contribute to the pathogenesis of a multitude of immune-mediated disorders. Here, we review features of microbiome-immunity crosstalk and their roles in health and disease, while providing examples of molecular mechanisms orchestrating these interactions in the intestine and extra-intestinal organs. We highlight aspects of the current knowledge, challenges and limitations in achieving causal understanding of host immune-microbiome interactions, as well as their impact on immune-mediated diseases, and discuss how these insights may translate towards future development of microbiome-targeted therapeutic interventions.

1,328 citations

Journal ArticleDOI
07 Jul 2016-Nature
TL;DR: Elucidation of the mechanisms that distinguish between homeostatic and pathogenic microbiota–host interactions could identify therapeutic targets for preventing or modulating inflammatory diseases and for boosting the efficacy of cancer immunotherapy.
Abstract: In the mucosa, the immune system's T cells and B cells have position-specific phenotypes and functions that are influenced by the microbiota. These cells play pivotal parts in the maintenance of immune homeostasis by suppressing responses to harmless antigens and by enforcing the integrity of the barrier functions of the gut mucosa. Imbalances in the gut microbiota, known as dysbiosis, can trigger several immune disorders through the activity of T cells that are both near to and distant from the site of their induction. Elucidation of the mechanisms that distinguish between homeostatic and pathogenic microbiota–host interactions could identify therapeutic targets for preventing or modulating inflammatory diseases and for boosting the efficacy of cancer immunotherapy.

1,233 citations

Journal ArticleDOI
TL;DR: This Review categorizes dysbiosis in conceptual terms and provides an overview of immunological associations; the causes and consequences of bacterial Dysbiosis, and their involvement in the molecular aetiology of common diseases; and implications for the rational design of new therapeutic approaches.
Abstract: Throughout the past century, we have seen the emergence of a large number of multifactorial diseases, including inflammatory, autoimmune, metabolic, neoplastic and neurodegenerative diseases, many of which have been recently associated with intestinal dysbiosis - that is, compositional and functional alterations of the gut microbiome. In linking the pathogenesis of common diseases to dysbiosis, the microbiome field is challenged to decipher the mechanisms involved in the de novo generation and the persistence of dysbiotic microbiome configurations, and to differentiate causal host-microbiome associations from secondary microbial changes that accompany disease course. In this Review, we categorize dysbiosis in conceptual terms and provide an overview of immunological associations; the causes and consequences of bacterial dysbiosis, and their involvement in the molecular aetiology of common diseases; and implications for the rational design of new therapeutic approaches. A molecular- level understanding of the origins of dysbiosis, its endogenous and environmental regulatory processes, and its downstream effects may enable us to develop microbiome-targeting therapies for a multitude of common immune-mediated diseases.

945 citations

Journal ArticleDOI
TL;DR: Findings suggest that IFN-Is produced in the CNS function in combination with metabolites derived from dietary tryptophan by the gut flora to activate AHR signaling in astrocytes and suppress CNS inflammation.
Abstract: After upregulation of AHR in astrocytes by type I interferons, commensal-microbe-derived metabolites of dietary tryptophan act on astrocytes to suppress CNS inflammation.

856 citations

Journal ArticleDOI
TL;DR: Understanding the interaction of the microbiota with pathogens and the immune system will provide critical insight into the pathogenesis of disease and the development of strategies to prevent and treat inflammatory disease.
Abstract: The intestinal tract of mammals is colonized by a large number of microorganisms including trillions of bacteria that are referred to collectively as the gut microbiota. These indigenous microorganisms have co-evolved with the host in a symbiotic relationship. In addition to metabolic benefits, symbiotic bacteria provide the host with several functions that promote immune homeostasis, immune responses, and protection against pathogen colonization. The ability of symbiotic bacteria to inhibit pathogen colonization is mediated via several mechanisms including direct killing, competition for limited nutrients, and enhancement of immune responses. Pathogens have evolved strategies to promote their replication in the presence of the gut microbiota. Perturbation of the gut microbiota structure by environmental and genetic factors increases the risk of pathogen infection, promotes the overgrowth of harmful pathobionts, and the development of inflammatory disease. Understanding the interaction of the microbiota with pathogens and the immune system will provide critical insight into the pathogenesis of disease and the development of strategies to prevent and treat inflammatory disease.

841 citations