scispace - formally typeset
Search or ask a question
Author

Tufikameni Brima

Bio: Tufikameni Brima is an academic researcher from University of Rochester. The author has contributed to research in topics: Cognitive development & Cognition. The author has an hindex of 3, co-authored 4 publications receiving 264 citations.

Papers
More filters
Journal ArticleDOI
Donald J. Hagler1, Sean N. Hatton1, M. Daniela Cornejo1, Carolina Makowski2, Damien A. Fair3, Anthony Steven Dick4, Matthew T. Sutherland4, B. J. Casey5, M Deanna6, Michael P. Harms6, Richard Watts5, James M. Bjork7, Hugh Garavan8, Laura Hilmer1, Christopher J. Pung1, Chelsea S. Sicat1, Joshua M. Kuperman1, Hauke Bartsch1, Feng Xue1, Mary M. Heitzeg9, Angela R. Laird4, Thanh T. Trinh1, Raul Gonzalez4, Susan F. Tapert1, Michael C. Riedel4, Lindsay M. Squeglia10, Luke W. Hyde9, Monica D. Rosenberg5, Eric Earl3, Katia D. Howlett11, Fiona C. Baker12, Mary E. Soules9, Jazmin Diaz1, Octavio Ruiz de Leon1, Wesley K. Thompson1, Michael C. Neale7, Megan M. Herting13, Elizabeth R. Sowell13, Ruben P. Alvarez11, Samuel W. Hawes4, Mariana Sanchez4, Jerzy Bodurka14, Florence J. Breslin14, Amanda Sheffield Morris14, Martin P. Paulus14, W. Kyle Simmons14, Jonathan R. Polimeni15, Andre van der Kouwe15, Andrew S. Nencka16, Kevin M. Gray10, Carlo Pierpaoli11, John A. Matochik11, Antonio Noronha11, Will M. Aklin11, Kevin P. Conway11, Meyer D. Glantz11, Elizabeth Hoffman11, Roger Little11, Marsha F. Lopez11, Vani Pariyadath11, Susan R.B. Weiss11, Dana L. Wolff-Hughes, Rebecca DelCarmen-Wiggins, Sarah W. Feldstein Ewing3, Oscar Miranda-Dominguez3, Bonnie J. Nagel3, Anders Perrone3, Darrick Sturgeon3, Aimee Goldstone12, Adolf Pfefferbaum12, Kilian M. Pohl12, Devin Prouty12, Kristina A. Uban17, Susan Y. Bookheimer18, Mirella Dapretto18, Adriana Galván18, Kara Bagot1, Jay N. Giedd1, M. Alejandra Infante1, Joanna Jacobus1, Kevin Patrick1, Paul D. Shilling1, Rahul S. Desikan19, Yi Li19, Leo P. Sugrue19, Marie T. Banich20, Naomi P. Friedman20, John K. Hewitt20, Christian J. Hopfer20, Joseph T. Sakai20, Jody Tanabe20, Linda B. Cottler21, Sara Jo Nixon21, Linda Chang22, Christine C. Cloak22, Thomas Ernst22, Gloria Reeves22, David N. Kennedy23, Steve Heeringa9, Scott Peltier9, John E. Schulenberg9, Chandra Sripada9, Robert A. Zucker9, William G. Iacono24, Monica Luciana24, Finnegan J. Calabro25, Duncan B. Clark25, David A. Lewis25, Beatriz Luna25, Claudiu Schirda25, Tufikameni Brima26, John J. Foxe26, Edward G. Freedman26, Daniel W. Mruzek26, Michael J. Mason27, Rebekah S. Huber28, Erin McGlade28, Andrew P. Prescot28, Perry F. Renshaw28, Deborah A. Yurgelun-Todd28, Nicholas Allgaier8, Julie A. Dumas8, Masha Y. Ivanova8, Alexandra Potter8, Paul Florsheim29, Christine L. Larson29, Krista M. Lisdahl29, Michael E. Charness30, Michael E. Charness15, Michael E. Charness31, Bernard F. Fuemmeler7, John M. Hettema7, Hermine H. Maes7, Joel L. Steinberg7, Andrey P. Anokhin6, Paul E.A. Glaser6, Andrew C. Heath6, Pamela A. F. Madden6, Arielle R. Baskin-Sommers5, R. Todd Constable5, Steven Grant11, Gayathri J. Dowling11, Sandra A. Brown1, Terry L. Jernigan1, Anders M. Dale1 
TL;DR: The baseline neuroimaging processing and subject-level analysis methods used by the Adolescent Brain Cognitive Development Study are described to be a resource of unprecedented scale and depth for studying typical and atypical development.

431 citations

Posted ContentDOI
Donald J. Hagler1, Sean N. Hatton1, Carolina Makowski2, M. Daniela Cornejo3, Damien A. Fair3, Anthony Steven Dick4, Matthew T. Sutherland4, B. J. Casey5, M Deanna6, Michael P. Harms6, Richard Watts5, James M. Bjork7, Hugh Garavan8, Laura Hilmer1, Christopher J. Pung1, Chelsea S. Sicat1, Joshua M. Kuperman1, Hauke Bartsch1, Feng Xue1, Mary M. Heitzeg9, Angela R. Laird4, Thanh T. Trinh1, Raul Gonzalez4, Susan F. Tapert1, Michael C. Riedel4, Lindsay M. Squeglia10, Luke W. Hyde9, Monica D. Rosenberg5, Eric Earl3, Katia D. Howlett11, Fiona C. Baker12, Mary E. Soules9, Jazmin Diaz1, Octavio Ruiz de Leon1, Wesley K. Thompson1, Michael C. Neale7, Megan M. Herting13, Elizabeth R. Sowell13, Ruben P. Alvarez14, Samuel W. Hawes4, Mariana Sanchez4, Jerzy Bodurka15, Florence J. Breslin15, Amanda Sheffield Morris15, Martin P. Paulus15, W. Kyle Simmons15, Jonathan R. Polimeni16, Andre van der Kouwe16, Andrew S. Nencka17, Kevin M. Gray10, Carlo Pierpaoli14, John A. Matochik14, Antonio Noronha14, Will M. Aklin11, Kevin P. Conway11, Meyer D. Glantz11, Elizabeth Hoffman11, Roger Little11, Marsha F. Lopez11, Vani Pariyadath11, Susan R.B. Weiss11, Dana L. Wolff-Hughes, Rebecca DelCarmen-Wiggins, Sarah W. Feldstein Ewing3, Oscar Miranda-Dominguez3, Bonnie J. Nagel3, Anders Perrone3, Darrick Sturgeon3, Aimee Goldstone12, Adolf Pfefferbaum12, Kilian M. Pohl12, Devin Prouty12, Kristina A. Uban1, Susan Y. Bookheimer1, Mirella Dapretto1, Adriana Galván1, Kara Bagot1, Jay N. Giedd1, M. Alejandra Infante1, Joanna Jacobus1, Kevin Patrick1, Paul D. Shilling1, Rahul S. Desikan1, Yi Li1, Leo P. Sugrue1, Marie T. Banich18, Naomi P. Friedman18, John K. Hewitt18, Christian J. Hopfer18, Joseph T. Sakai18, Jody Tanabe18, Linda B. Cottler19, Sara Jo Nixon19, Linda Chang20, Christine C. Cloak20, Thomas Ernst20, Gloria Reeves20, David N. Kennedy21, Steve Heeringa9, Scott Peltier9, John E. Schulenberg9, Chandra Sripada9, Robert A. Zucker9, William G. Iacono22, Monica Luciana22, Finnegan J. Calabro23, Duncan B. Clark23, David A. Lewis23, Beatriz Luna23, Claudiu Schirda23, Tufikameni Brima24, John J. Foxe24, Edward G. Freedman24, Daniel W. Mruzek24, Michael J. Mason25, Rebekah S. Huber26, Erin McGlade26, Andrew P. Prescot26, Perry F. Renshaw26, Deborah A. Yurgelun-Todd26, Nicholas Allgaier8, Julie A. Dumas8, Masha Y. Ivanova8, Alexandra Potter8, Paul Florsheim27, Christine L. Larson27, Krista M. Lisdahl27, Michael E. Charness28, Bernard F. Fuemmeler7, John M. Hettema7, Joel L. Steinberg7, Andrey P. Anokhin6, Paul E.A. Glaser6, Andrew C. Heath6, Pamela A. F. Madden6, Arielle R. Baskin-Sommers5, R. Todd Constable5, Steven Grant11, Gayathri J. Dowling11, Sandra A. Brown1, Terry L. Jernigan1, Anders M. Dale1 
04 Nov 2018-bioRxiv
TL;DR: The baseline neuroimaging processing and subject-level analysis methods used by the ABCD DAIC in the centralized processing and extraction of neuroanatomical and functional imaging phenotypes are described.
Abstract: The Adolescent Brain Cognitive Development (ABCD) Study is an ongoing, nationwide study of the effects of environmental influences on behavioral and brain development in adolescents. The ABCD Study is a collaborative effort, including a Coordinating Center, 21 data acquisition sites across the United States, and a Data Analysis and Informatics Center (DAIC). The main objective of the study is to recruit and assess over eleven thousand 9-10-year-olds and follow them over the course of 10 years to characterize normative brain and cognitive development, the many factors that influence brain development, and the effects of those factors on mental health and other outcomes. The study employs state-of-the-art multimodal brain imaging, cognitive and clinical assessments, bioassays, and careful assessment of substance use, environment, psychopathological symptoms, and social functioning. The data will provide a resource of unprecedented scale and depth for studying typical and atypical development. Here, we describe the baseline neuroimaging processing and subject-level analysis methods used by the ABCD DAIC in the centralized processing and extraction of neuroanatomical and functional imaging phenotypes. Neuroimaging processing and analyses include modality-specific corrections for distortions and motion, brain segmentation and cortical surface reconstruction derived from structural magnetic resonance imaging (sMRI), analysis of brain microstructure using diffusion MRI (dMRI), task-related analysis of functional MRI (fMRI), and functional connectivity analysis of resting-state fMRI.

276 citations

Journal ArticleDOI
TL;DR: It is indicated that while RTT patients can decode deviations in auditory duration, the span of this sensory memory system is severely foreshortened, with likely implications for speech decoding abilities.
Abstract: Rett syndrome (RTT), a rare neurodevelopmental disorder caused by mutations in the MECP2 gene, is typified by profound cognitive impairment and severe language impairment, rendering it very difficult to accurately measure auditory processing capabilities behaviorally in this population. Here we leverage the mismatch negativity (MMN) component of the event-related potential to measure the ability of RTT patients to decode and store occasional duration deviations in a stream of auditory stimuli. Sensory memory for duration, crucial for speech comprehension, has not been studied in RTT. High-density electroencephalography was successfully recorded in 18 females with RTT and 27 age-matched typically developing (TD) controls (aged 6–22 years). Data from seven RTT and three TD participants were excluded for excessive noise. Stimuli were 1 kHz tones with a standard duration of 100 ms and deviant duration of 180 ms. To assess the sustainability of sensory memory, stimulus presentation rate was varied with stimulus onset asynchronies (SOAs) of 450, 900, and 1800 ms. MMNs with maximum negativity over fronto-central scalp and a latency of 220–230 ms were clearly evident for each presentation rate in the TD group, but only for the shortest SOA in the RTT group. Repeated-measures ANOVA revealed a significant group by SOA interaction. MMN amplitude correlated with age in the TD group only. MMN amplitude was not correlated with the Rett Syndrome Severity Scale. This study indicates that while RTT patients can decode deviations in auditory duration, the span of this sensory memory system is severely foreshortened, with likely implications for speech decoding abilities.

18 citations

Posted ContentDOI
05 Mar 2019-bioRxiv
TL;DR: It is indicated that while RTT patients can decode deviations in auditory duration, the span of this sensory memory system is severely foreshortened, with likely implications for speech decoding abilities.
Abstract: Rett syndrome (RTT), a rare neurodevelopmental disorder caused by mutations in the MECP2 gene, is typified by profound cognitive impairment and severe language impairment, rendering it very difficult to accurately measure auditory processing capabilities behaviorally in this population. Here we leverage the mismatch negativity (MMN) component of the event-related potential to measure the ability of RTT patients to decode and store occasional duration deviations in a stream of auditory stimuli. Sensory memory for duration, crucial for speech comprehension, has not been studied in RTT. High-density EEG was successfully recorded in 18 females with RTT and 27 age-matched typically developing (TD) controls (aged 6-22 years). Data from 7 RTT and 3 TD participants were excluded for excessive noise. Stimuli were 1kHz tones with a standard duration of 100ms and deviant duration of 180ms. To assess the sustainability of sensory memory, stimulus presentation rate was varied with stimulus onset asynchronies (SOAs) of 450, 900 and 1800ms. MMNs with maximum negativity over fronto-central scalp and a latency of 220-230ms were clearly evident for each presentation rate in the TD group, but only for the shortest SOA in the RTT group. Repeated-measures ANOVA revealed a significant group by SOA interaction. MMN amplitude correlated with age in the TD group only. MMN amplitude was not correlated with the Rett Syndrome Severity Scale. This study indicates that while RTT patients can decode deviations in auditory duration, the span of this sensory memory system is severely foreshortened, with likely implications for speech decoding abilities.

2 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This study suggests that prenatal cannabis exposure and its correlated factors are associated with greater risk for psychopathology during middle childhood, and Cannabis use during pregnancy should be discouraged.
Abstract: Importance In light of increasing cannabis use among pregnant women, the US Surgeon General recently issued an advisory against the use of marijuana during pregnancy. Objective To evaluate whether cannabis use during pregnancy is associated with adverse outcomes among offspring. Design, Setting, and Participants In this cross-sectional study, data were obtained from the baseline session of the ongoing longitudinal Adolescent Brain and Cognitive Development Study, which recruited 11 875 children aged 9 to 11 years, as well as a parent or caregiver, from 22 sites across the United States between June 1, 2016, and October 15, 2018. Exposure Prenatal cannabis exposure prior to and after maternal knowledge of pregnancy. Main Outcomes and Measures Symptoms of psychopathology in children (ie, psychotic-like experiences [PLEs] and internalizing, externalizing, attention, thought, and social problems), cognition, sleep, birth weight, gestational age at birth, body mass index, and brain structure (ie, total intracranial volume, white matter volume, and gray matter volume). Covariates included familial (eg, income and familial psychopathology), pregnancy (eg, prenatal exposure to alcohol and tobacco), and child (eg, substance use) variables. Results Among 11 489 children (5997 boys [52.2%]; mean [SD] age, 9.9 [0.6] years) with nonmissing prenatal cannabis exposure data, 655 (5.7%) were exposed to cannabis prenatally. Relative to no exposure, cannabis exposure only before (413 [3.6%]) and after (242 [2.1%]) maternal knowledge of pregnancy were associated with greater offspring psychopathology characteristics (ie, PLEs and internalizing, externalizing, attention, thought and, social problems), sleep problems, and body mass index, as well as lower cognition and gray matter volume (all |β| > 0.02; all false discovery rate [FDR]–correctedP 0.02; all FDR-correctedP 0.02; FDR-correctedP .70). Conclusions and Relevance This study suggests that prenatal cannabis exposure and its correlated factors are associated with greater risk for psychopathology during middle childhood. Cannabis use during pregnancy should be discouraged.

122 citations

Journal ArticleDOI
TL;DR: How the Adolescent Brain Cognitive Development Study was designed to elucidate factors associated with the development of negative mental and physical health outcomes is outlined and a selective overview of results emerging from the ABCD Study is provided.

109 citations

Journal ArticleDOI
TL;DR: Consistent with hypotheses about the dimensionality of psychosis, the results provide novel evidence that neural correlates of PLEs, such as reduced functional connectivity of higher-order cognitive networks, are present even in school-aged children.

87 citations

Journal ArticleDOI
02 Nov 2020
TL;DR: Evidence is provided that the broader neighborhood context uniquely contributes to prefrontal and hippocampal development and cognitive performance and should be considered in studies of early life poverty and adversity.
Abstract: Importance The association between poverty and unfavorable cognitive outcomes is robust, but most research has focused on individual household socioeconomic status (SES). There is increasing evidence that neighborhood context explains unique variance not accounted for by household SES. Objective To evaluate whether neighborhood poverty (NP) is associated with cognitive function and prefrontal and hippocampal brain structure in ways that are dissociable from household SES. Design, Setting, and Participants This cross-sectional study used a baseline sample of the ongoing longitudinal Adolescent Brain Cognitive Development (ABCD) Study. The ABCD Study will follow participants for assessments each year for 10 years. Data were collected at 21 US sites, mostly within urban and suburban areas, between September 2019 and October 2018. School-based recruitment was used to create a participant sample reflecting the US population. Data analysis was conducted from March to June 2019. Main Outcomes and Measures NP and household SES were included as factors potentially associated with National Institutes of Health Toolbox Cognitive Battery subtests and hippocampal and prefrontal (dorsolateral prefrontal cortex [DLPFC], dorsomedial PFC [DMPFC], superior frontal gyrus [SFG]) volumes. Independent variables were first considered individually and then together in mixed-effects models with age, sex, and intracranial volume as covariates. Structural equation modeling (SEM) was used to assess shared variance in NP to brain structure and cognitive task associations. The tested hypotheses were formulated after data collection. Results A total of 11 875 children aged 9 and 10 years (5678 [47.8%] girls) were analyzed. Greater NP was associated with lower scores across all cognitive domains (eg, total composite: β = -0.18; 95% CI, -0.21 to -0.15; P < .001) and with decreased brain volume in the DLPFC (eg, right DLPFC: β = -0.09; 95% CI, -0.12 to -0.07; P < .001), DMPFC (eg, right DMPC: β = -0.07; 95% CI, -0.09 to -0.05; P < .001), SFG (eg, right SFG: β = -0.05; 95% CI, -0.08 to -0.03; P < .001), and right hippocampus (β = -0.04; 95% CI, -0.06 to -0.01; P = .01), even when accounting for household income. Greater household income was associated with higher scores across all cognitive domains (eg, total composite: β = 0.30; 95% CI, 0.28 to 0.33; P < .001) and larger volume in all prefrontal and hippocampal brain regions (eg, right hippocampus: β = 0.04; 95% CI, 0.02 to 0.07; P < .001) even when accounting for NP. The SEM model was a good fit across all cognitive domains, with prefrontal regions being associated with NP relations to language (picture vocabulary: estimate [SE], -0.03 [0.01]; P < .001; oral reading: estimate [SE], -0.02 [0.01]; P < .001), episodic memory (picture sequence: estimate [SE], -0.02 [0.01]; P = .008), and working memory (dimensional card sort: estimate [SE], -0.02 [0.01]; P = .001; flanker inhibitory control: estimate [SE], -0.01 [0.01]; P = .01; list sorting: estimate [SE], -0.03 [0.01]; P < .001) and hippocampal regions being associated with NP associations with language (picture vocabulary: estimate [SE], -0.01 [0.004]; P < .001) and episodic memory (picture sequence: estimate [SE], -0.01 [0.004]; P < 0.001). Conclusions and Relevance In this study, NP accounted for unique variance in cognitive function and prefrontal and right hippocampal brain volume. These findings demonstrate the importance of including broader environmental influences when conceptualizing early life adversity.

87 citations

Journal ArticleDOI
TL;DR: Cross-sectional analysis of data from the Adolescent Brain Cognitive Development Study shows that children from families with low income are at increased risk of cognitive impairment associated with high lead-exposure risk when compared with children with high income.
Abstract: Socioeconomic factors influence brain development and structure, but most studies have overlooked neurotoxic insults that impair development, such as lead exposure. Childhood lead exposure affects cognitive development at the lowest measurable concentrations, but little is known about its impact on brain development during childhood. We examined cross-sectional associations among brain structure, cognition, geocoded measures of the risk of lead exposure and sociodemographic characteristics in 9,712 9- and 10-year-old children. Here we show stronger negative associations of living in high-lead-risk census tracts in children from lower- versus higher-income families. With increasing risk of exposure, children from lower-income families exhibited lower cognitive test scores, smaller cortical volume and smaller cortical surface area. Reducing environmental insults associated with lead-exposure risk might confer greater benefit to children experiencing more environmental adversity, and further understanding of the factors associated with high lead-exposure risk will be critical for improving such outcomes in children. Cross-sectional analysis of data from the Adolescent Brain Cognitive Development Study shows that children from families with low income are at increased risk of cognitive impairment associated with high lead-exposure risk when compared with children from families with high income.

86 citations