scispace - formally typeset
Search or ask a question
Author

Tufve Nyholm

Other affiliations: Uppsala University
Bio: Tufve Nyholm is an academic researcher from Umeå University. The author has contributed to research in topics: Magnetic resonance imaging & Prostate cancer. The author has an hindex of 24, co-authored 107 publications receiving 2648 citations. Previous affiliations of Tufve Nyholm include Uppsala University.


Papers
More filters
Journal ArticleDOI
TL;DR: The s-CT method has the potential to provide an accurate estimation of CT information without risk of geometrical inaccuracies as the model is voxel based and could be well suited as alternatives to CT images for dose planning in radiotherapy and attenuation correction in PET/MRI.
Abstract: Purpose: Methods for deriving computed tomography (CT) equivalent information from MRI are needed for attenuation correction in PET/MRI applications, as well as for patient positioning and dose pla

338 citations

Journal ArticleDOI
TL;DR: A variety of promising approaches exist that seem clinical acceptable even with standard clinical MRI sequences, and a consistent reference frame for method benchmarking is probably necessary to move the field further towards a widespread clinical implementation.
Abstract: Radiotherapy based on magnetic resonance imaging as the sole modality (MRI-only RT) is an area of growing scientific interest due to the increasing use of MRI for both target and normal tissue delineation and the development of MR based delivery systems. One major issue in MRI-only RT is the assignment of electron densities (ED) to MRI scans for dose calculation and a similar need for attenuation correction can be found for hybrid PET/MR systems. The ED assigned MRI scan is here named a substitute CT (sCT). In this review, we report on a collection of typical performance values for a number of main approaches encountered in the literature for sCT generation as compared to CT. A literature search in the Scopus database resulted in 254 papers which were included in this investigation. A final number of 50 contributions which fulfilled all inclusion criteria were categorized according to applied method, MRI sequence/contrast involved, number of subjects included and anatomical site investigated. The latter included brain, torso, prostate and phantoms. The contributions geometric and/or dosimetric performance metrics were also noted. The majority of studies are carried out on the brain for 5–10 patients with PET/MR applications in mind using a voxel based method. T1 weighted images are most commonly applied. The overall dosimetric agreement is in the order of 0.3–2.5%. A strict gamma criterion of 1% and 1mm has a range of passing rates from 68 to 94% while less strict criteria show pass rates > 98%. The mean absolute error (MAE) is between 80 and 200 HU for the brain and around 40 HU for the prostate. The Dice score for bone is between 0.5 and 0.95. The specificity and sensitivity is reported in the upper 80s% for both quantities and correctly classified voxels average around 84%. The review shows that a variety of promising approaches exist that seem clinical acceptable even with standard clinical MRI sequences. A consistent reference frame for method benchmarking is probably necessary to move the field further towards a widespread clinical implementation.

294 citations

Journal ArticleDOI
TL;DR: MRI can replace CT in all steps of the treatment workflow, reducing the radiation exposure to the patient, removing any systematic registration errors that may occur when combining MR and CT, and decreasing time and cost for the extra CT investigation.
Abstract: Because of superior soft tissue contrast, the use of magnetic resonance imaging (MRI) as a complement to computed tomography (CT) in the target definition procedure for radiotherapy is increasing. To keep the workflow simple and cost effective and to reduce patient dose, it is natural to strive for a treatment planning procedure based entirely on MRI. In the present study, we investigate the dose calculation accuracy for different treatment regions when using bulk density assignments on MRI data and compare it to treatment planning that uses CT data. MR and CT data were collected retrospectively for 40 patients with prostate, lung, head and neck, or brain cancers. Comparisons were made between calculations on CT data with and without inhomogeneity corrections and on MRI or CT data with bulk density assignments. The bulk densities were assigned using manual segmentation of tissue, bone, lung, and air cavities. The deviations between calculations on CT data with inhomogeneity correction and on bulk density assigned MR data were small. The maximum difference in the number of monitor units required to reach the prescribed dose was 1.6%. This result also includes effects of possible geometrical distortions. The dose calculation accuracy at the investigated treatment sites is not significantly compromised when using MRI data when adequate bulk density assignments are made. With respect to treatment planning, MRI can replace CT in all steps of the treatment workflow, reducing the radiation exposure to the patient, removing any systematic registration errors that may occur when combining MR and CT, and decreasing time and cost for the extra CT investigation.

216 citations

Journal ArticleDOI
TL;DR: The new logistics model with an integrated MR unit is efficient and will allow for improved tumor definition and geometrical precision without a significant loss of dosimetric accuracy.
Abstract: PURPOSE: To introduce a novel technology arrangement in an integrated environment and outline the logistics model needed to incorporate dedicated magnetic resonance (MR) imaging in the radiotherapy ...

155 citations

Journal ArticleDOI
TL;DR: Treatment planning directly on MR images reduce the spatial uncertainty for prostate treatments and the main contributing factor to this improvement is the exclusion of registration between MR and CT in the planning phase of the treatment.
Abstract: Background In the present work we compared the spatial uncertainties associated with a MR-based workflow for external radiotherapy of prostate cancer to a standard CT-based workflow. The MR-based workflow relies on target definition and patient positioning based on MR imaging. A solution for patient transport between the MR scanner and the treatment units has been developed. For the CT-based workflow, the target is defined on a MR series but then transferred to a CT study through image registration before treatment planning, and a patient positioning using portal imaging and fiducial markers.

146 citations


Cited by
More filters
DOI
23 Jan 2013
TL;DR: A comprehensive picture of image registration methods and their applications is painted and is an introduction for those new to the profession, an overview for those working in the field, and a reference for those searching for literature on a specific application.
Abstract: Computerized Image Registration approaches can offer automatic and accurate image alignments without extensive user involvement and provide tools for visualizing combined images. The aim of this survey is to present a review of publications related to Medical Image Registration. This paper paints a comprehensive picture of image registration methods and their applications. This paper is an introduction for those new to the field, an overview for those working in the field and a reference for those searching for literature on a specific application. Methods are classified according to the different aspects of Medical Image Registration.

686 citations

01 Jan 2016
TL;DR: The the essential physics of medical imaging is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for reading the essential physics of medical imaging. As you may know, people have search hundreds times for their chosen novels like this the essential physics of medical imaging, but end up in harmful downloads. Rather than enjoying a good book with a cup of tea in the afternoon, instead they juggled with some infectious virus inside their laptop. the essential physics of medical imaging is available in our digital library an online access to it is set as public so you can get it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the the essential physics of medical imaging is universally compatible with any devices to read.

632 citations

Journal ArticleDOI
Xiao Han1
TL;DR: A novel deep convolutional neural network (DCNN) method was developed and shown to be able to produce highly accurate sCT estimations from conventional, single‐sequence MR images in near real time.
Abstract: Purpose Interests have been rapidly growing in the field of radiotherapy to replace CT with magnetic resonance imaging (MRI), due to superior soft tissue contrast offered by MRI and the desire to reduce unnecessary radiation dose. MR-only radiotherapy also simplifies clinical workflow and avoids uncertainties in aligning MR with CT. Methods, however, are needed to derive CT-equivalent representations, often known as synthetic CT (sCT), from patient MR images for dose calculation and DRR-based patient positioning. Synthetic CT estimation is also important for PET attenuation correction in hybrid PET-MR systems. We propose in this work a novel deep convolutional neural network (DCNN) method for sCT generation and evaluate its performance on a set of brain tumor patient images. Methods The proposed method builds upon recent developments of deep learning and convolutional neural networks in the computer vision literature. The proposed DCNN model has 27 convolutional layers interleaved with pooling and unpooling layers and 35 million free parameters, which can be trained to learn a direct end-to-end mapping from MR images to their corresponding CTs. Training such a large model on our limited data is made possible through the principle of transfer learning and by initializing model weights from a pretrained model. Eighteen brain tumor patients with both CT and T1-weighted MR images are used as experimental data and a sixfold cross-validation study is performed. Each sCT generated is compared against the real CT image of the same patient on a voxel-by-voxel basis. Comparison is also made with respect to an atlas-based approach that involves deformable atlas registration and patch-based atlas fusion. Results The proposed DCNN method produced a mean absolute error (MAE) below 85 HU for 13 of the 18 test subjects. The overall average MAE was 84.8 ± 17.3 HU for all subjects, which was found to be significantly better than the average MAE of 94.5 ± 17.8 HU for the atlas-based method. The DCNN method also provided significantly better accuracy when being evaluated using two other metrics: the mean squared error (188.6 ± 33.7 versus 198.3 ± 33.0) and the Pearson correlation coefficient(0.906 ± 0.03 versus 0.896 ± 0.03). Although training a DCNN model can be slow, training only need be done once. Applying a trained model to generate a complete sCT volume for each new patient MR image only took 9 s, which was much faster than the atlas-based approach. Conclusions A DCNN model method was developed, and shown to be able to produce highly accurate sCT estimations from conventional, single-sequence MR images in near real time. Quantitative results also showed that the proposed method competed favorably with an atlas-based method, in terms of both accuracy and computation speed at test time. Further validation on dose computation accuracy and on a larger patient cohort is warranted. Extensions of the method are also possible to further improve accuracy or to handle multi-sequence MR images.

615 citations

Journal ArticleDOI
TL;DR: This article summarizes the present knowledge and gives an insight into the future procedures to handle the nonequilibrium radiation dosimetry problems and is anticipated that new miniature detectors with controlled perturbations and corrections will be available to meet the demand for accurate measurements.
Abstract: Advances in radiation treatment with beamlet-based intensity modulation, image-guided radiation therapy, and stereotactic radiosurgery (including specialized equipments like CyberKnife, Gamma Knife, tomotherapy, and high-resolution multileaf collimating systems) have resulted in the use of reduced treatment fields to a subcentimeter scale. Compared to the traditional radiotherapy with fields > or =4 x 4 cm2, this can result in significant uncertainty in the accuracy of clinical dosimetry. The dosimetry of small fields is challenging due to nonequilibrium conditions created as a consequence of the secondary electron track lengths and the source size projected through the collimating system that are comparable to the treatment field size. It is further complicated by the prolonged electron tracks in the presence of low-density inhomogeneities. Also, radiation detectors introduced into such fields usually perturb the level of disequilibrium. Hence, the dosimetric accuracy previously achieved for standard radiotherapy applications is at risk for both absolute and relative dose determination. This article summarizes the present knowledge and gives an insight into the future procedures to handle the nonequilibrium radiation dosimetry problems. It is anticipated that new miniature detectors with controlled perturbations and corrections will be available to meet the demand for accurate measurements. It is also expected that the Monte Carlo techniques will increasingly be used in assessing the accuracy, verification, and calculation of dose, and will aid perturbation calculations of detectors used in small and highly conformal radiation beams. rican Association of Physicists in Medicine.

602 citations