scispace - formally typeset
Search or ask a question
Author

Tuhong Wang

Bio: Tuhong Wang is an academic researcher from Civil Aviation Authority of Singapore. The author has contributed to research in topics: Medicine & Biology. The author has an hindex of 3, co-authored 7 publications receiving 34 citations.
Topics: Medicine, Biology, Genetic diversity, Gene flow, Bulb

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review the patterns and potential underlying mechanisms of interactions between secondary metabolites and plant microbiomes and describe the recent developments in analytical approaches and methods in this field.
Abstract: Plant secondary metabolites (PSMs) play many roles including defense against pathogens, pests, and herbivores; response to environmental stresses, and mediating organismal interactions. Similarly, plant microbiomes participate in many of the above-mentioned processes directly or indirectly by regulating plant metabolism. Studies have shown that plants can influence their microbiome by secreting various metabolites and, in turn, the microbiome may also impact the metabolome of the host plant. However, not much is known about the communications between the interacting partners to impact their phenotypic changes. In this article, we review the patterns and potential underlying mechanisms of interactions between PSMs and plant microbiomes. We describe the recent developments in analytical approaches and methods in this field. The applications of these new methods and approaches have increased our understanding of the relationships between PSMs and plant microbiomes. Though the current studies have primarily focused on model organisms, the methods and results obtained so far should help future studies of agriculturally important plants and facilitate the development of methods to manipulate PSMs-microbiome interactions with predictive outcomes for sustainable crop productions.

165 citations

Journal ArticleDOI
19 Jun 2020
TL;DR: The objective of this paper was to review the current status of research on molecular diagnosis of oomycete pathogens on fiber crops, and summarize the molecular assays that have been used to identify these pathogens and discuss potential areas of future development for fast, specific, and accurate diagnosis.
Abstract: Fiber crops are an important group of economic plants Traditionally cultivated for fiber, fiber crops have also become sources of other materials such as food, animal feed, cosmetics and medicine Asia and America are the two main production areas of fiber crops in the world However, oomycete diseases have become an important factor limiting their yield and quality, causing devastating consequences for the production of fiber crops in many regions To effectively control oomycete pathogens and reduce their negative impacts on these crops, it is very important to have fast and accurate detection systems, especially in the early stages of infection With the rapid development of molecular biology, the diagnosis of plant pathogens has progressed from relying on traditional morphological features to the increasing use of molecular methods The objective of this paper was to review the current status of research on molecular diagnosis of oomycete pathogens on fiber crops Our search of PubMed identified nearly 30 species or subspecies of oomycetes on fiber crops, among which the top three species were Phytophthora boehmeriae, Phytophthora nicotianae and Pythium ultimum The gene regions that have been used for molecular identifications of these pathogens include the internal transcribed spacer (ITS) regions of the nuclear ribosomal RNA gene cluster, and genes coding for translation elongation factor 1α (EF-1α) and mitochondrial cytochrome c oxidase subunits I and II (Cox 1, Cox 2), etc We summarize the molecular assays that have been used to identify these pathogens and discuss potential areas of future development for fast, specific, and accurate diagnosis of oomycetes on fiber crops

19 citations

Journal ArticleDOI
TL;DR: The objective of this study was to review the current status of research on molecular diagnosis of fungal pathogens on bast fiber crops and summarize the molecular assays that have been used to identify these fungi and discuss potential areas of future development for fast, specific, and accurate diagnosis.
Abstract: Bast fibers and products derived from them are undergoing a resurgence in demand in the global market. However, fungal diseases have become an important factor limiting their yield and quality, causing devastating consequences for the production of bast fiber crops in many parts of the world. Thus, there is a high demand for effective control and prevention strategies against fungal pathogens. Having rapid, specific, sensitive, and cost-effective tests that can be used for early and accurate diagnosis of disease agents is an essential step of such strategies. The objective of this study was to review the current status of research on molecular diagnosis of fungal pathogens on bast fiber crops. Our search of PubMed identified nearly 20 genera of fungal pathogens on bast fiber crops, among which the five most common genera were Colletotrichum, Pythium, Verticillium, Fusarium, and Golovinomyces. The gene regions that have been used for molecular identifications of these fungi include internal transcribed spacer (ITS), translation elongation factor 1-α (EF-1α), s-tubulin, calmodulin (CAL), histone subunit 3 (H3), glyceraldehydes-3-phosphate dehydrogenase (GAPDH), etc. We summarize the molecular assays that have been used to identify these fungi and discuss potential areas of future development for fast, specific, and accurate diagnosis of fungal pathogens on bast fiber crops.

13 citations

Journal ArticleDOI
TL;DR: This review summarizes the structural diversity of SAMs and encapsulates the relationships between their structures and biological activities, and describes methods for monitoring and quantifying SAMs in food and agricultural products.
Abstract: Sphinganine-analog mycotoxins (SAMs) including fumonisins and A. alternata f. sp. Lycopersici (AAL) toxins are a group of related mycotoxins produced by plant pathogenic fungi in the Fusarium genus and in Alternaria alternata f. sp. Lycopersici, respectively. SAMs have shown diverse cytotoxicity and phytotoxicity, causing adverse impacts on plants, animals, and humans, and are a destructive force to crop production worldwide. This review summarizes the structural diversity of SAMs and encapsulates the relationships between their structures and biological activities. The toxicity of SAMs on plants and animals is mainly attributed to their inhibitory activity against the ceramide biosynthesis enzyme, influencing the sphingolipid metabolism and causing programmed cell death. We also reviewed the detoxification methods against SAMs and how plants develop resistance to SAMs. Genetic and evolutionary analyses revealed that the FUM (fumonisins biosynthetic) gene cluster was responsible for fumonisin biosynthesis in Fusarium spp. Sequence comparisons among species within the genus Fusarium suggested that mutations and multiple horizontal gene transfers involving the FUM gene cluster were responsible for the interspecific difference in fumonisin synthesis. We finish by describing methods for monitoring and quantifying SAMs in food and agricultural products.

12 citations

Journal ArticleDOI
14 Jun 2020-Insects
TL;DR: Interestingly, haplotype network analyses suggest evidence for potential mitochondrial recombination in natural populations of this species, and results on its evolution, center of diversity, route of spread, and pest management strategies in hemp fields are discussed.
Abstract: The hemp flea beetle Psylliodes attenuata (Coleoptera: Chrysomelidae: Psylliodes) is a common pest of Cannabis sativa, including cultivars of both industrial hemp and medicinal marijuana. Both the larval and adult stages of this beetle can cause significant damages to C. sativa, resulting in substantial crop losses. At present, little is known about the populations of this pest, including its genetic diversity. In this study, we obtained 281 P. attenuata samples from nine field sites representing broad industrial hemp productions in China and analyzed their DNA sequences at the mitochondrial COI gene, the insect DNA barcode. Our analyses revealed a total of 48 haplotypes, with 28 being found only in one specimen each while the remaining 20 were shared by two or more specimens each. Of the 20 shared haplotypes, eight were shared among local populations often from far away locations, consistent with recent long-distance dispersals. However, the observed putative long-distance dispersals have not obscured the significant genetic differentiations among the regional populations from northeastern, eastern, central and southwestern China. Interestingly, haplotype network analyses suggest evidence for potential mitochondrial recombination in natural populations of this species. We briefly discuss the implications of our results on its evolution, center of diversity, route of spread, and pest management strategies in hemp fields.

6 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors review the patterns and potential underlying mechanisms of interactions between secondary metabolites and plant microbiomes and describe the recent developments in analytical approaches and methods in this field.
Abstract: Plant secondary metabolites (PSMs) play many roles including defense against pathogens, pests, and herbivores; response to environmental stresses, and mediating organismal interactions. Similarly, plant microbiomes participate in many of the above-mentioned processes directly or indirectly by regulating plant metabolism. Studies have shown that plants can influence their microbiome by secreting various metabolites and, in turn, the microbiome may also impact the metabolome of the host plant. However, not much is known about the communications between the interacting partners to impact their phenotypic changes. In this article, we review the patterns and potential underlying mechanisms of interactions between PSMs and plant microbiomes. We describe the recent developments in analytical approaches and methods in this field. The applications of these new methods and approaches have increased our understanding of the relationships between PSMs and plant microbiomes. Though the current studies have primarily focused on model organisms, the methods and results obtained so far should help future studies of agriculturally important plants and facilitate the development of methods to manipulate PSMs-microbiome interactions with predictive outcomes for sustainable crop productions.

165 citations

Journal ArticleDOI
TL;DR: A review of molecular methods for diagnosing the widespread and emerging plant pathogenic fungi can be found in this article, where molecular techniques used in plant disease diagnostics need to be more reliable, faster, and easier than conventional methods.
Abstract: Phytopathogenic fungal species can cause enormous losses in quantity and quality of crop yields and this is a major economic issue in the global agricultural sector. Precise and rapid detection and identification of plant infecting fungi are essential to facilitate effective management of disease. DNA-based methods have become popular methods for accurate plant disease diagnostics. Recent developments in standard and variant polymerase chain reaction (PCR) assays including nested, multiplex, quantitative, bio and magnetic-capture hybridization PCR techniques, post and isothermal amplification methods, DNA and RNA based probe development, and next-generation sequencing provide novel tools in molecular diagnostics in fungal detection and differentiation fields. These molecular based detection techniques are effective in detecting symptomatic and asymptomatic diseases of both culturable and unculturable fungal pathogens in sole and co-infections. Even though the molecular diagnostic approaches have expanded substantially in the recent past, there is a long way to go in the development and application of molecular diagnostics in plant diseases. Molecular techniques used in plant disease diagnostics need to be more reliable, faster, and easier than conventional methods. Now the challenges are with scientists to develop practical techniques to be used for molecular diagnostics of plant diseases. Recent advancement in the improvement and application of molecular methods for diagnosing the widespread and emerging plant pathogenic fungi are discussed in this review.

60 citations

Journal ArticleDOI
TL;DR: A review of the important diseases currently affecting the cannabis and hemp industries in North America is presented in this article, where the authors discuss various mitigation strategies, such as establishing clean planting stock, modifying environmental conditions to reduce pathogen development, implementing sanitation measures, and applying fungal and bacterial biological control agents.
Abstract: Cultivation of cannabis plants (Cannabis sativa L., marijuana) has taken place worldwide for centuries. In Canada, legalization of cannabis in October 2018 for the medicinal and recreational markets has spurned interest in large-scale growing. This increased production has seen a rise in the incidence and severity of plant pathogens, causing a range of previously unreported diseases. The objective of this review is to highlight the important diseases currently affecting the cannabis and hemp industries in North America and to discuss various mitigation strategies. Progress in molecular diagnostics for pathogen identification and determining inoculum sources and methods of pathogen spread have provided useful insights. Sustainable disease management approaches include establishing clean planting stock, modifying environmental conditions to reduce pathogen development, implementing sanitation measures, and applying fungal and bacterial biological control agents. Fungicides are not currently registered for use and hence there are no published data on their efficacy. The greatest challenge remains in reducing microbial loads (colony-forming units) on harvested inflorescences (buds). Contaminating microbes may be introduced during the cultivation and postharvest phases, or constitute resident endophytes. Failure to achieve a minimum threshold of microbes deemed to be safe for utilization of cannabis products can arise from conventional and organic cultivation methods, or following applications of beneficial biocontrol agents. The current regulatory process for approval of cannabis products presents a challenge to producers utilizing biological control agents for disease management. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

35 citations

Journal ArticleDOI
TL;DR: In this article , the effects of plant growth-promoting rhizobacteria (PGPR) inoculants on rhizosphere microbial ecology and soil function are discussed, and the authors hypothesize that PGPR may indirectly promote plant growth and health via modifying the composition and functioning of the microbial community and highlighting the further directions for investigating the role of PGPR from an ecological perspective.
Abstract: Plant beneficial bacteria, defined as plant growth-promoting rhizobacteria (PGPR), play a crucial role in plants’ growth, stress tolerance and disease prevention. In association with the rhizosphere of plants, PGPR facilitate plant growth and development either directly or indirectly through multiple mechanisms, including increasing available mineral nutrients, moderating phytohormone levels and acting as biocontrol agents of phytopathogens. It is generally accepted that the effectiveness of PGPR inoculants is associated with their ability to colonize, survive and persist, as well as the complex network of interactions in the rhizosphere. Despite the promising plant growth promotion results commonly reported and mostly attributed to phytohormones or other organic compounds produced by PGPR inoculants, little information is available on the potential mechanisms underlying such positive effects via modifying rhizosphere microbial community and soil functionality. In this review, we overviewed the effects of PGPR inoculants on rhizosphere microbial ecology and soil function, hypothesizing that PGPR may indirectly promote plant growth and health via modifying the composition and functioning of rhizosphere microbial community, and highlighting the further directions for investigating the role of PGPR in rhizosphere from an ecological perspective.

22 citations

Journal ArticleDOI
TL;DR: The assessment of root exudates calls for the development of hyphenated analytical methodologies, as well as efforts to consolidate data-preprocessing workflows.

22 citations