scispace - formally typeset
Search or ask a question
Author

Tuija Jokinen

Bio: Tuija Jokinen is an academic researcher from University of Helsinki. The author has contributed to research in topics: Aerosol & Nucleation. The author has an hindex of 30, co-authored 69 publications receiving 6279 citations. Previous affiliations of Tuija Jokinen include Leibniz Association & The Cyprus Institute.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
27 Feb 2014-Nature
TL;DR: It is found that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies.
Abstract: Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.

1,340 citations

Journal ArticleDOI
22 Feb 2013-Science
TL;DR: Three separate size regimes below 2-nm diameter are identified that build up a physically, chemically, and dynamically consistent framework on atmospheric nucleation—more specifically, aerosol formation via neutral pathways.
Abstract: Atmospheric nucleation is the dominant source of aerosol particles in the global atmosphere and an important player in aerosol climatic effects. The key steps of this process occur in the sub–2-nanometer (nm) size range, in which direct size-segregated observations have not been possible until very recently. Here, we present detailed observations of atmospheric nanoparticles and clusters down to 1-nm mobility diameter. We identified three separate size regimes below 2-nm diameter that build up a physically, chemically, and dynamically consistent framework on atmospheric nucleation—more specifically, aerosol formation via neutral pathways. Our findings emphasize the important role of organic compounds in atmospheric aerosol formation, subsequent aerosol growth, radiative forcing and associated feedbacks between biogenic emissions, clouds, and climate.

890 citations

Journal ArticleDOI
Joao Almeida1, Joao Almeida2, Siegfried Schobesberger3, Andreas Kürten1, Ismael K. Ortega3, Oona Kupiainen-Määttä3, Arnaud P. Praplan4, Alexey Adamov3, António Amorim5, F. Bianchi4, Martin Breitenlechner6, A. David2, Josef Dommen4, Neil M. Donahue7, Andrew J. Downard8, Eimear M. Dunne9, Jonathan Duplissy3, Sebastian Ehrhart1, Richard C. Flagan8, Alessandro Franchin3, Roberto Guida2, Jani Hakala3, Armin Hansel6, Martin Heinritzi6, Henning Henschel3, Tuija Jokinen3, Heikki Junninen3, Maija Kajos3, Juha Kangasluoma3, Helmi Keskinen10, Agnieszka Kupc11, Theo Kurtén3, Alexander N. Kvashin12, Ari Laaksonen10, Ari Laaksonen13, Katrianne Lehtipalo3, Markus Leiminger1, Johannes Leppä13, Ville Loukonen3, Vladimir Makhmutov12, Serge Mathot2, Matthew J. McGrath14, Tuomo Nieminen15, Tuomo Nieminen3, Tinja Olenius3, Antti Onnela2, Tuukka Petäjä3, Francesco Riccobono4, Ilona Riipinen16, Matti P. Rissanen3, Linda Rondo1, Taina Ruuskanen3, Filipe Duarte Santos5, Nina Sarnela3, Simon Schallhart3, R. Schnitzhofer6, John H. Seinfeld8, Mario Simon1, Mikko Sipilä3, Mikko Sipilä15, Yuri Stozhkov12, Frank Stratmann17, António Tomé5, Jasmin Tröstl4, Georgios Tsagkogeorgas17, Petri Vaattovaara10, Yrjö Viisanen13, Annele Virtanen10, Aron Vrtala11, Paul E. Wagner11, Ernest Weingartner4, Heike Wex17, Christina Williamson1, Daniela Wimmer3, Daniela Wimmer1, Penglin Ye7, Taina Yli-Juuti3, Kenneth S. Carslaw9, Markku Kulmala3, Markku Kulmala15, Joachim Curtius1, Urs Baltensperger4, Douglas R. Worsnop, Hanna Vehkamäki3, Jasper Kirkby1, Jasper Kirkby2 
17 Oct 2013-Nature
TL;DR: The results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.
Abstract: Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei(1). Aerosols can cause a net cooling of climate by scattering sun ...

738 citations

Journal ArticleDOI
Jasmin Tröstl1, Wayne Chuang2, Hamish Gordon3, Martin Heinritzi4, Chao Yan5, Ugo Molteni1, Lars Ahlm6, Carla Frege1, F. Bianchi1, F. Bianchi5, F. Bianchi7, Robert Wagner5, Mario Simon4, Katrianne Lehtipalo1, Katrianne Lehtipalo5, Christina Williamson8, Christina Williamson9, Christina Williamson4, J. S. Craven10, Jonathan Duplissy11, Jonathan Duplissy5, Alexey Adamov5, Joao Almeida3, Anne-Kathrin Bernhammer12, Martin Breitenlechner12, Sophia Brilke4, Antonio Dias3, Sebastian Ehrhart3, Richard C. Flagan10, Alessandro Franchin5, Claudia Fuchs1, Roberto Guida3, Martin Gysel1, Armin Hansel12, Christopher R. Hoyle1, Tuija Jokinen5, Heikki Junninen5, Juha Kangasluoma5, Helmi Keskinen13, Helmi Keskinen9, Helmi Keskinen5, Jaeseok Kim9, Jaeseok Kim13, Manuel Krapf1, Andreas Kürten4, Ari Laaksonen14, Ari Laaksonen13, Michael J. Lawler15, Michael J. Lawler13, Markus Leiminger4, Serge Mathot3, Ottmar Möhler16, Tuomo Nieminen5, Tuomo Nieminen11, Antti Onnela3, Tuukka Petäjä5, Felix Piel4, Pasi Miettinen13, Matti P. Rissanen5, Linda Rondo4, Nina Sarnela5, Siegfried Schobesberger9, Siegfried Schobesberger5, Kamalika Sengupta17, Mikko Sipilä5, James N. Smith18, James N. Smith13, Gerhard Steiner12, Gerhard Steiner5, Gerhard Steiner19, António Tomé20, Annele Virtanen13, Andrea Christine Wagner4, Ernest Weingartner9, Ernest Weingartner1, Daniela Wimmer4, Daniela Wimmer5, Paul M. Winkler19, Penglin Ye2, Kenneth S. Carslaw17, Joachim Curtius4, Josef Dommen1, Jasper Kirkby3, Jasper Kirkby4, Markku Kulmala5, Ilona Riipinen6, Douglas R. Worsnop11, Douglas R. Worsnop5, Neil M. Donahue5, Neil M. Donahue2, Urs Baltensperger1 
26 May 2016-Nature
TL;DR: It is shown that organic vapours alone can drive nucleation, and a particle growth model is presented that quantitatively reproduces the measurements and implements a parameterization of the first steps of growth in a global aerosol model that can change substantially in response to concentrations of atmospheric cloud concentration nuclei.
Abstract: About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer. Although recent studies predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Kohler theory), has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10(-4.5) micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10(-4.5) to 10(-0.5) micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.

507 citations

Journal ArticleDOI
Jasper Kirkby1, Jasper Kirkby2, Jonathan Duplissy3, Jonathan Duplissy4, Kamalika Sengupta5, Carla Frege6, Hamish Gordon1, Christina Williamson2, Christina Williamson7, Martin Heinritzi2, Martin Heinritzi8, Mario Simon2, Chao Yan3, Joao Almeida1, Joao Almeida2, Jasmin Tröstl6, Tuomo Nieminen4, Tuomo Nieminen3, Ismael K. Ortega, Robert Wagner3, Alexey Adamov3, António Amorim9, Anne-Kathrin Bernhammer8, F. Bianchi6, F. Bianchi10, Martin Breitenlechner8, Sophia Brilke2, Xuemeng Chen3, J. S. Craven11, Antonio Dias1, Sebastian Ehrhart1, Sebastian Ehrhart2, Richard C. Flagan11, Alessandro Franchin3, Claudia Fuchs6, Roberto Guida1, Jani Hakala3, Christopher R. Hoyle6, Tuija Jokinen3, Heikki Junninen3, Juha Kangasluoma3, Jaeseok Kim12, Jaeseok Kim7, Manuel Krapf6, Andreas Kürten2, Ari Laaksonen12, Ari Laaksonen13, Katrianne Lehtipalo3, Katrianne Lehtipalo6, Vladimir Makhmutov14, Serge Mathot1, Ugo Molteni6, Antti Onnela1, Otso Peräkylä3, Felix Piel2, Tuukka Petäjä3, Arnaud P. Praplan3, Kirsty J. Pringle5, Alexandru Rap5, N. A. D. Richards5, Ilona Riipinen15, Matti P. Rissanen3, Linda Rondo2, Nina Sarnela3, Siegfried Schobesberger7, Siegfried Schobesberger3, Catherine E. Scott5, John H. Seinfeld11, Mikko Sipilä3, Mikko Sipilä4, Gerhard Steiner3, Gerhard Steiner8, Gerhard Steiner16, Yuri Stozhkov14, Frank Stratmann17, António Tomé18, Annele Virtanen12, Alexander L. Vogel1, Andrea Christine Wagner2, Paul E. Wagner16, Ernest Weingartner6, Daniela Wimmer3, Daniela Wimmer2, Paul M. Winkler16, Penglin Ye19, Xuan Zhang11, Armin Hansel8, Josef Dommen6, Neil M. Donahue19, Douglas R. Worsnop3, Douglas R. Worsnop12, Urs Baltensperger6, Markku Kulmala3, Markku Kulmala4, Kenneth S. Carslaw5, Joachim Curtius2 
26 May 2016-Nature
TL;DR: Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.
Abstract: Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere, and that ions have a relatively minor role. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.

502 citations


Cited by
More filters
Journal ArticleDOI
27 Feb 2014-Nature
TL;DR: It is found that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies.
Abstract: Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.

1,340 citations

01 Dec 2006
TL;DR: This paper showed that reactive anthropogenic VOCs (AVOCs) produce much larger amounts of SOA than these models predict, even shortly after sunrise, and a significant fraction of the excess SOA is formed from first-generation AVOC oxidation products.
Abstract: [1] The atmospheric chemistry of volatile organic compounds (VOCs) in urban areas results in the formation of ‘photochemical smog’, including secondary organic aerosol (SOA). State-of-the-art SOA models parameterize the results of simulation chamber experiments that bracket the conditions found in the polluted urban atmosphere. Here we show that in the real urban atmosphere reactive anthropogenic VOCs (AVOCs) produce much larger amounts of SOA than these models predict, even shortly after sunrise. Contrary to current belief, a significant fraction of the excess SOA is formed from first-generation AVOC oxidation products. Global models deem AVOCs a very minor contributor to SOA compared to biogenic VOCs (BVOCs). If our results are extrapolated to other urban areas, AVOCs could be responsible for additional 3–25 Tg yr−1 SOA production globally, and cause up to −0.1 W m−2 additional top-of-the-atmosphere radiative cooling.

947 citations

Journal ArticleDOI
22 Feb 2013-Science
TL;DR: Three separate size regimes below 2-nm diameter are identified that build up a physically, chemically, and dynamically consistent framework on atmospheric nucleation—more specifically, aerosol formation via neutral pathways.
Abstract: Atmospheric nucleation is the dominant source of aerosol particles in the global atmosphere and an important player in aerosol climatic effects. The key steps of this process occur in the sub–2-nanometer (nm) size range, in which direct size-segregated observations have not been possible until very recently. Here, we present detailed observations of atmospheric nanoparticles and clusters down to 1-nm mobility diameter. We identified three separate size regimes below 2-nm diameter that build up a physically, chemically, and dynamically consistent framework on atmospheric nucleation—more specifically, aerosol formation via neutral pathways. Our findings emphasize the important role of organic compounds in atmospheric aerosol formation, subsequent aerosol growth, radiative forcing and associated feedbacks between biogenic emissions, clouds, and climate.

890 citations