scispace - formally typeset
Search or ask a question
Author

Tulay Adali

Bio: Tulay Adali is an academic researcher from University of Maryland, Baltimore County. The author has contributed to research in topics: Independent component analysis & Blind signal separation. The author has an hindex of 64, co-authored 429 publications receiving 20040 citations. Previous affiliations of Tulay Adali include Johns Hopkins University & University of Baltimore.


Papers
More filters
Journal ArticleDOI
TL;DR: A novel approach for drawing group inferences using ICA of fMRI data is introduced, and its application to a simple visual paradigm that alternately stimulates the left or right visual field is presented.
Abstract: Independent component analysis (ICA) is a promising analysis method that is being increasingly applied to fMRI data. A principal advantage of this approach is its applicability to cognitive paradigms for which detailed models of brain activity are not available. Independent component analysis has been successfully utilized to analyze single-subject fMRI data sets, and an extension of this work would be to provide for group inferences. However, unlike univariate methods (e.g., regression analysis, Kolmogorov-Smirnov statistics), ICA does not naturally generalize to a method suitable for drawing inferences about groups of subjects. We introduce a novel approach for drawing group inferences using ICA of fMRI data, and present its application to a simple visual paradigm that alternately stimulates the left or right visual field. Our group ICA analysis revealed task-related components in left and right visual cortex, a transiently task-related component in bilateral occipital/parietal cortex, and a non-task-related component in bilateral visual association cortex. We address issues involved in the use of ICA as an fMRI analysis method such as: (1) How many components should be calculated? (2) How are these components to be combined across subjects? (3) How should the final results be thresholded and/or presented? We show that the methodology we present provides answers to these questions and lay out a process for making group inferences from fMRI data using independent component analysis.

2,729 citations

Journal ArticleDOI
22 Oct 2014-Neuron
TL;DR: This Perspective uses the term "chronnectome" to describe metrics that allow a dynamic view of coupling and focuses on multivariate approaches developed in the group and review a number of approaches with an emphasis on matrix decompositions such as principle component analysis and independent component analysis.

1,148 citations

Journal ArticleDOI
TL;DR: An overview of current approaches for utilizing ICA to make group inferences with a focus upon the group ICA approach implemented in the GIFT software and an overview of the use of I CA to combine or fuse multimodal data are provided.

1,046 citations

Journal ArticleDOI
TL;DR: This work uses the software package ICASSO to analyze the independent component estimates at different orders and shows that, when ICA is performed at overestimated orders, the stability of the IC estimates decreases and the estimation of task related brain activations show degradation.
Abstract: Multivariate analysis methods such as independent component analysis (ICA) have been applied to the analysis of functional magnetic resonance imaging (fMRI) data to study brain function. Because of the high dimensionality and high noise level of the fMRI data, order selection, i.e., estimation of the number of informative components, is critical to reduce over/underfitting in such methods. De- pendence among fMRI data samples in the spatial and temporal domain limits the usefulness of the practical formulations of information-theoretic criteria (ITC) for order selection, since they are based on likelihood of independent and identically distributed (i.i.d.) data samples. To address this issue, we pro- pose a subsampling scheme to obtain a set of effectively i.i.d. samples from the dependent data samples and apply the ITC formulas to the effectively i.i.d. sample set for order selection. We apply the proposed method on the simulated data and show that it significantly improves the accuracy of order selection from dependent data. We also perform order selection on fMRI data from a visuomotor task and show that the proposed method alleviates the over-estimation on the number of brain sources due to the intrin- sic smoothness and the smooth preprocessing of fMRI data. We use the software package ICASSO (Him- berg et al. (2004): Neuroimage 22:1214-1222) to analyze the independent component (IC) estimates at dif- ferent orders and show that, when ICA is performed at overestimated orders, the stability of the IC esti- mates decreases and the estimation of task related brain activations show degradation. Hum Brain Mapp

830 citations

Journal ArticleDOI
TL;DR: A careful examination of some of the assumptions behind ICA methodologies is reported, examples of when applying ICA would provide difficult‐to‐interpret results, and suggestions for applying I CA to fMRI data especially when more than one task‐related component is present in the data are offered.
Abstract: r r Abstract: Independent component analysis (ICA) is a technique that attempts to separate data into maximally independent groups. Achieving maximal independence in space or time yields two varieties of ICA mean- ingful for functional MRI (fMRI) applications: spatial ICA (SICA) and temporal ICA (TICA). SICA has so far dominated the application of ICA to fMRI. The objective of these experiments was to study ICA with two predictable components present and evaluate the importance of the underlying independence assumption in the application of ICA. Four novel visual activation paradigms were designed, each consisting of two spatiotemporal components that were either spatially dependent, temporally dependent, both spatially and temporally dependent, or spatially and temporally uncorrelated, respectively. Simulated data were generated and fMRI data from six subjects were acquired using these paradigms. Data from each paradigm were analyzed with regression analysis in order to determine if the signal was occurring as expected. Spatial and temporal ICA were then applied to these data, with the general result that ICA found components only where expected, e.g., S(T)ICA "failed" (i.e., yielded independent components unrelated to the "self-evident" com- ponents) for paradigms that were spatially (temporally) dependent, and "worked" otherwise. Regression analysis proved a useful "check" for these data, however strong hypotheses will not always be available, and a strength of ICA is that it can characterize data without making specific modeling assumptions. We report a careful examination of some of the assumptions behind ICA methodologies, provide examples of when applying ICA would provide difficult-to-interpret results, and offer suggestions for applying ICA to fMRI data especially when more than one task-related component is present in the data. Hum. Brain Mapping 13:43-53, 2001. © 2001 Wiley-Liss, Inc.

704 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
31 Jan 2002-Neuron
TL;DR: In this paper, a technique for automatically assigning a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set is presented.

7,120 citations

Journal ArticleDOI
TL;DR: The results suggest the need for greater care in dealing with subject motion, and the need to critically revisit previous rs-fcMRI work that may not have adequately controlled for effects of transient subject movements.

6,411 citations

Journal ArticleDOI
TL;DR: Two distinct networks typically coactivated during functional MRI tasks are identified, anchored by dorsal anterior cingulate and orbital frontoinsular cortices with robust connectivity to subcortical and limbic structures, and an “executive-control network” that links dorsolateral frontal and parietal neocortices.
Abstract: Variations in neural circuitry, inherited or acquired, may underlie important individual differences in thought, feeling, and action patterns. Here, we used task-free connectivity analyses to isolate and characterize two distinct networks typically coactivated during functional MRI tasks. We identified a "salience network," anchored by dorsal anterior cingulate (dACC) and orbital frontoinsular cortices with robust connectivity to subcortical and limbic structures, and an "executive-control network" that links dorsolateral frontal and parietal neocortices. These intrinsic connectivity networks showed dissociable correlations with functions measured outside the scanner. Prescan anxiety ratings correlated with intrinsic functional connectivity of the dACC node of the salience network, but with no region in the executive-control network, whereas executive task performance correlated with lateral parietal nodes of the executive-control network, but with no region in the salience network. Our findings suggest that task-free analysis of intrinsic connectivity networks may help elucidate the neural architectures that support fundamental aspects of human behavior.

6,049 citations

Journal ArticleDOI
TL;DR: Findings show that the baseline activity of the brain is consistent across subjects exhibiting significant temporal dynamics, with percentage BOLD signal change comparable with the signal changes found in task-related experiments.
Abstract: Functional MRI (fMRI) can be applied to study the functional connectivity of the human brain. It has been suggested that fluctuations in the blood oxygenation level-dependent (BOLD) signal during rest reflect the neuronal baseline activity of the brain, representing the state of the human brain in the absence of goal-directed neuronal action and external input, and that these slow fluctuations correspond to functionally relevant resting-state networks. Several studies on resting fMRI have been conducted, reporting an apparent similarity between the identified patterns. The spatial consistency of these resting patterns, however, has not yet been evaluated and quantified. In this study, we apply a data analysis approach called tensor probabilistic independent component analysis to resting-state fMRI data to find coherencies that are consistent across subjects and sessions. We characterize and quantify the consistency of these effects by using a bootstrapping approach, and we estimate the BOLD amplitude modulation as well as the voxel-wise cross-subject variation. The analysis found 10 patterns with potential functional relevance, consisting of regions known to be involved in motor function, visual processing, executive functioning, auditory processing, memory, and the so-called default-mode network, each with BOLD signal changes up to 3%. In general, areas with a high mean percentage BOLD signal are consistent and show the least variation around the mean. These findings show that the baseline activity of the brain is consistent across subjects exhibiting significant temporal dynamics, with percentage BOLD signal change comparable with the signal changes found in task-related experiments.

4,135 citations