scispace - formally typeset
Search or ask a question
Author

Tullia Isotta Terraneo

Bio: Tullia Isotta Terraneo is an academic researcher from King Abdullah University of Science and Technology. The author has contributed to research in topics: Scleractinia & Biology. The author has an hindex of 13, co-authored 24 publications receiving 357 citations. Previous affiliations of Tullia Isotta Terraneo include James Cook University & University of Milano-Bicocca.
Topics: Scleractinia, Biology, Coral, Reef, Coral reef

Papers
More filters
Journal ArticleDOI
TL;DR: The efficiency of multi-locus phylogenetic analyses and recently developed molecular species delimitation approaches are demonstrated as valuable tools to disentangle taxonomic issues caused by morphological ambiguities and to re-assess the diversity of scleractinian corals.

42 citations

Journal ArticleDOI
TL;DR: This study presents the most comprehensive molecular phylogeny reconstruction of the lobophylliid family to date based on COI and rDNA including 9 genera and 32 species, 14 of which were investigated for the first time.

40 citations

Journal ArticleDOI
TL;DR: This work uses the genome-wide technique Restriction-site Associated DNA sequencing (RADseq) to investigate phylogenetic relationships and species delimitation within the genus Leptastrea, and proposes a consistent species definition method for corals based on the combination of genomic, morphological, morphometric, and distributional data.
Abstract: Accurate delimitation of species and their relationships is a fundamental issue in evolutionary biology and taxonomy and provides essential implications for conservation management. Scleractinian corals are difficult to identify because of their ecophenotypic and geographic variation and their morphological plasticity. Furthermore, phylogenies based on traditional loci are often unresolved at the species level because of uninformative loci. Here, we attempted to resolve these issues and proposed a consistent species definition method for corals by applying the genome-wide technique Restriction-site Associated DNA sequencing (RADseq) to investigate phylogenetic relationships and species delimitation within the genus Leptastrea. We collected 77 colonies from nine localities of the Indo-Pacific and subjected them to genomic analyses. Based on de novo clustering, we obtained 44,162 SNPs (3701 loci) from the holobiont dataset and 62,728 SNPs (9573 loci) from the reads that map to coral transcriptome to reconstruct a robust phylogenetic hypothesis of the genus. Moreover, nearly complete mitochondrial genomes and ribosomal DNA arrays were retrieved by reference mapping. We combined concatenation-based phylogenetic analyses with coalescent-based species tree and species delimitation methods. Phylogenies suggest the presence of six distinct species, three corresponding to known taxa, namely Leptastrea bottae, Leptastrea inaequalis, Leptastrea transversa, one characterized by a remarkable skeletal variability encompassing the typical morphologies of Leptastrea purpurea and Leptastrea pruinosa, and two distinct and currently undescribed species. Therefore, based on the combination of genomic, morphological, morphometric, and distributional data, we herein described Leptastrea gibbosa sp. n. from the Pacific Ocean and Leptastrea magaloni sp. n. from the southwestern Indian Ocean and formally considered L. pruinosa as a junior synonym of L. purpurea. Notably, mitogenomes and rDNA yielded a concordant yet less resolved phylogeny reconstruction compared to the ones based on SNPs. This aspect demonstrates the strength and utility of RADseq technology for disentangling species boundaries in closely related species and in a challenging group such as scleractinian corals.

36 citations

Journal ArticleDOI
TL;DR: This study provides the first large-scale molecular characterization of Symbiodiniaceae communities associated with Porites corals from the Saudi Arabian Red Sea, enabling the resolution of host-symbiont specificity and biogeographical patterns of distribution, previously unachievable with the ITS2 marker alone.
Abstract: Aim: The aim of the study was to assess the diversity of algal symbionts of the family Symbiodiniaceae associated with the coral genus Porites in the Red Sea, and to test for host-specificity and environmental variables driving biogeographical patterns of algal symbiont distribution. Location: Saudi Arabian Red Sea. Taxon: Endosymbiotic dinoflagellates of the family Symbiodiniaceae in association with the reef-building coral genus Porites. Methods: Eighty Porites coral specimens were collected along the Saudi Arabian Red Sea coast. Species boundaries were assessed morphologically and genetically (putative Control Region – mtCR; ITS region – ITS). Community composition of symbiotic dinoflagellates of the family Symbiodiniaceae was also assessed. Using the ITS2 marker with the SymPortal framework, Symbiodiniaceae data at the genus, majority ITS2 sequence and ITS2 type profile were used to assess symbiont diversity and distribution patterns. These were analysed in relation to coral host diversity, geographic location and environmental variables. Results: Among the 80 Porites samples, 10 morphologies were identified. These corals were clustered into five lineages (clades I–V) by each of the markers independently. Clades I, II and III each comprised of a single Porites morphology, while clades IV and V contained up to five distinct morphologies. The diversity of Symbiodiniaceae associated with Porites was high and latitudinal differentiation was observed. In particular, a shift from a Cladocopium-dominated to a Durusdinium-dominated community was found along the north–south gradient. Symbiont diversity showed the patterns of geographic-specific association at Symbiodiniaceae genus, majority ITS2 sequence and ITS2 type profile level. Specific associations with host genotypes (but not morphological species) were also recovered when considering Symbiodiniaceae majority ITS2 sequence and ITS2 type profiles. Main conclusions: This study provides the first large-scale molecular characterization of Symbiodiniaceae communities associated with Porites corals from the Saudi Arabian Red Sea. The use of intragenomic diversity data enabled the resolution of host-symbiont specificity and biogeographical patterns of distribution, previously unachievable with the ITS2 marker alone. Finally, correlation among symbiont diversity and Red Sea environmental gradients was documented.

34 citations

Journal ArticleDOI
13 Aug 2014-ZooKeys
TL;DR: A molecular phylogenetic reconstruction using the mitochondrial intergenic spacer between COI and 16S-rRNA confirms that P. inattesa sp.
Abstract: A new scleractinian coral species, Pachyseris inattesa sp. n., is described from the Red Sea. Despite a superficial resemblance with some species in the agariciid genus Leptoseris with which it has been previously confused, P. inattesa sp. n. has micro-morphological characters typical of the genus Pachyseris. This genus, once part of the Agariciidae, is comprised of five extant species and is widely distributed throughout the tropical Indo-Pacific. It is currently incertae sedis as a result of recent molecular analysis and appears to be closely related to the Euphylliidae. A molecular phylogenetic reconstruction including P. inattesa sp. n., the genus type species P. rugosa, and P. speciosa, all present in the Red Sea, was performed using the mitochondrial intergenic spacer between COI and 16S-rRNA. The results confirm that P. inattesa sp. n. is a monophyletic lineage closely related to the other Pachyseris species examined. © Tullia I. Terraneo et al.

34 citations


Cited by
More filters
Journal Article

626 citations

Journal ArticleDOI
TL;DR: It is demonstrated that ASAP has the potential to become a major tool for taxonomists as it proposes rapidly in a full graphical exploratory interface relevant species hypothesis as a first step of the integrative taxonomy process.
Abstract: Here, we describe Assemble Species by Automatic Partitioning (ASAP), a new method to build species partitions from single locus sequence alignments (i.e., barcode data sets). ASAP is efficient enough to split data sets as large 104 sequences into putative species in several minutes. Although grounded in evolutionary theory, ASAP is the implementation of a hierarchical clustering algorithm that only uses pairwise genetic distances, avoiding the computational burden of phylogenetic reconstruction. Importantly, ASAP proposes species partitions ranked by a new scoring system that uses no biological prior insight of intraspecific diversity. ASAP is a stand-alone program that can be used either through a graphical web-interface or that can be downloaded and compiled for local usage. We have assessed its power along with three others programs (ABGD, PTP and GMYC) on 10 real COI barcode data sets representing various degrees of challenge (from small and easy cases to large and complicated data sets). We also used Monte-Carlo simulations of a multispecies coalescent framework to assess the strengths and weaknesses of ASAP and the other programs. Through these analyses, we demonstrate that ASAP has the potential to become a major tool for taxonomists as it proposes rapidly in a full graphical exploratory interface relevant species hypothesis as a first step of the integrative taxonomy process.

393 citations

Journal ArticleDOI
TL;DR: In the absence of gene flow, the main factor influencing the performance of these methods is the ratio of population size to divergence time, while number of loci and sample size per species have smaller effects, highlighting the importance of using an informed starting point for molecular species delimitation.
Abstract: Species are fundamental units in biological research and can be defined on the basis of various operational criteria. There has been growing use of molecular approaches for species delimitation. Among the most widely used methods, the generalized mixed Yule-coalescent (GMYC) and Poisson tree processes (PTP) were designed for the analysis of single-locus data but are often applied to concatenations of multilocus data. In contrast, the Bayesian multispecies coalescent approach in the software Bayesian Phylogenetics and Phylogeography (BPP) explicitly models the evolution of multilocus data. In this study, we compare the performance of GMYC, PTP, and BPP using synthetic data generated by simulation under various speciation scenarios. We show that in the absence of gene flow, the main factor influencing the performance of these methods is the ratio of population size to divergence time, while number of loci and sample size per species have smaller effects. Given appropriate priors and correct guide trees, BPP shows lower rates of species overestimation and underestimation, and is generally robust to various potential confounding factors except high levels of gene flow. The single-threshold GMYC and the best strategy that we identified in PTP generally perform well for scenarios involving more than a single putative species when gene flow is absent, but PTP outperforms GMYC when fewer species are involved. Both methods are more sensitive than BPP to the effects of gene flow and potential confounding factors. Case studies of bears and bees further validate some of the findings from our simulation study, and reveal the importance of using an informed starting point for molecular species delimitation. Our results highlight the key factors affecting the performance of molecular species delimitation, with potential benefits for using these methods within an integrative taxonomic framework.

253 citations

Journal ArticleDOI
TL;DR: The overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research.
Abstract: Trait-based approaches advance ecological and evolutionary research because traits provide a strong link to an organism’s function and fitness. Trait-based research might lead to a deeper understanding of the functions of, and services provided by, ecosystems, thereby improving management, which is vital in the current era of rapid environmental change. Coral reef scientists have long collected trait data for corals; however, these are difficult to access and often under-utilized in addressing large-scale questions. We present the Coral Trait Database initiative that aims to bring together physiological, morphological, ecological, phylogenetic and biogeographic trait information into a single repository. The database houses species- and individual-level data from published field and experimental studies alongside contextual data that provide important framing for analyses. In this data descriptor, we release data for 56 traits for 1547 species, and present a collaborative platform on which other trait data are being actively federated. Our overall goal is for the Coral Trait Database to become an open-source, community-led data clearinghouse that accelerates coral reef research.

188 citations

Journal ArticleDOI
TL;DR: The Red Sea biota appears resilient to major environmental fluctuations and is characterized by high rates of endemism with variable degrees of incursion into the Gulf of Aden, which is more likely determined by ecological plasticity and genetic diversity.
Abstract: Aim: The Red Sea is characterised by a unique fauna and historical periods of desiccation, hypersalinity and intermittent isolation. The origin and contemporary composition of reef-associated taxa in this region can illuminate biogeographical principles about vicariance and the establishment (or local extirpation) of existing species. Here we aim to: (1) outline the distribution of shallow water fauna between the Red Sea and adjacent regions, (2) explore mechanisms for maintaining these distributions and (3) propose hypotheses to test these mechanisms. Location: Red Sea, Gulf of Aden, Arabian Sea, Arabian Gulf and Indian Ocean. Methods: Updated checklists for scleractinian corals, fishes and non-coral invertebrates were used to determine species richness in the Red Sea and the rest of the Arabian Peninsula and assess levels of endemism. Fine-scale diversity and abundance of reef fishes within the Red Sea were explored using ecological survey data. Results: Within the Red Sea, we recorded 346 zooxanthellate and azooxanthellate scleractinian coral species of which 19 are endemic (5.5%). Currently 635 species of polychaetes, 211 echinoderms and 79 ascidians have been documented, with endemism rates of 12.6%, 8.1% and 16.5% respectively. A preliminary compilation of 231 species of crustaceans and 137 species of molluscs include 10.0% and 6.6% endemism respectively. We documented 1071 shallow fish species, with 12.9% endemic in the entire Red Sea and 14.1% endemic in the Red Sea and Gulf of Aden. Based on ecological survey data of endemic fishes, there were no major changes in species richness or abundance across 1100km of Saudi Arabian coastline. Main conclusions: The Red Sea biota appears resilient to major environmental fluctuations and is characterized by high rates of endemism with variable degrees of incursion into the Gulf of Aden. The nearby Omani and Arabian Gulfs also have variable environments and high levels of endemism, but these are not consistently distinct across taxa. The presence of physical barriers does not appear to explain species distributions, which are more likely determined by ecological plasticity and genetic diversity.

172 citations