scispace - formally typeset
Search or ask a question
Author

Tusevo Zacarie

Bio: Tusevo Zacarie is an academic researcher. The author has contributed to research in topics: Population. The author has an hindex of 2, co-authored 2 publications receiving 25 citations.
Topics: Population

Papers
More filters
Journal ArticleDOI
TL;DR: Blue-black 0.25 m2 cloth targets show promise as simple cost effective devices for management of G. p.
Abstract: Background Glossina palpalis palpalis (G. p. palpalis) is one of the principal vectors of sleeping sickness and nagana in Africa with a geographical range stretching from Liberia in West Africa to Angola in Central Africa. It inhabits tropical rain forest but has also adapted to urban settlements. We set out to standardize a long-lasting, practical and cost-effective visually attractive device that would induce the strongest landing response by G. p. palpalis for future use as an insecticide-impregnated tool in area-wide population suppression of this fly across its range. Methodology/Principal Findings Trials were conducted in wet and dry seasons in the Ivory Coast, Cameroon, the Democratic Republic of Congo and Angola to measure the performance of traps (biconical, monoconical and pyramidal) and targets of different sizes and colours, with and without chemical baits, at different population densities and under different environmental conditions. Adhesive film was used as a practical enumerator at these remote locations to compare landing efficiencies of devices. Independent of season and country, both phthalogen blue-black and blue-black-blue 1 m2 targets covered with adhesive film proved to be as good as traps in phthalogen blue or turquoise blue for capturing G. p. palpalis. Trap efficiency varied (8–51%). There was no difference between the performance of blue-black and blue-black-blue 1 m2 targets. Baiting with chemicals augmented the overall performance of targets relative to traps. Landings on smaller phthalogen blue-black 0.25 m2 square targets were not significantly different from either 1 m2 blue-black-blue or blue-black square targets. Three times more flies were captured per unit area on the smaller device. Conclusions/Significance Blue-black 0.25 m2 cloth targets show promise as simple cost effective devices for management of G. p. palpalis as they can be used for both control when impregnated with insecticide and for population sampling when covered with adhesive film.

18 citations

Journal ArticleDOI
TL;DR: This study confirms earlier findings on G. swynnertoni that smaller visual targets, down to 0.5 m2, would be as efficient as using 1 m2 targets for population management of this species and indicates that an insecticide-impregnated pyramidal trap would also constitute an effective control device for G. centralis.
Abstract: Background This study focused on the savannah tsetse species Glossina swynnertoni and G. morsitans centralis, both efficient vectors of human and animal trypanosomiasis in, respectively, East and Central Africa. The aim was to develop long-lasting, practical and cost-effective visually attractive devices that induce the strongest landing responses in these two species for use as insecticide-impregnated tools in population suppression. Methods and findings Trials were conducted in different seasons and years in Tanzania (G. swynnertoni) and in Angola and the Democratic Republic of the Congo (DRC, G. m. centralis) to measure the performance of traps (pyramidal and epsilon) and targets of different sizes, shapes and colours, with and without chemical baits, at different population densities and under different environmental conditions. Adhesive film was used to catch flies landing on devices at the remote locations to compare tsetse-landing efficiencies. Landing rates by G. m. centralis in both Angola and the DRC were highest on blue-black 1 m2 oblong and 0.5 m2 square and oblong targets but were not significantly different from landings on the pyramidal trap. Landings by G. swynnertoni on 0.5 m2 blue-black oblong targets were likewise not significantly lower than on equivalent 1 m2 square targets. The length of target horizontal edge was closely correlated with landing rate. Blue-black 0.5 m2 targets performed better than equivalents in all-blue for both G. swynnertoni and G. m. centralis, although not consistently. Baiting with chemicals increased the proportion of G. m. centralis entering pyramidal traps. Conclusions This study confirms earlier findings on G. swynnertoni that smaller visual targets, down to 0.5 m2, would be as efficient as using 1 m2 targets for population management of this species. This is also the case for G. m. centralis. An insecticide-impregnated pyramidal trap would also constitute an effective control device for G. m. centralis.

7 citations


Cited by
More filters
01 Jan 2016
TL;DR: The modern applied statistics with s is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading modern applied statistics with s. As you may know, people have search hundreds times for their favorite readings like this modern applied statistics with s, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. modern applied statistics with s is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the modern applied statistics with s is universally compatible with any devices to read.

5,249 citations

Journal ArticleDOI
TL;DR: Comparison with the updated cost of historical HAT vector control projects and recent estimates indicates that this work represents a major reduction in cost levels, attributed not just to the low unit cost of tiny targets but also to the organisation of delivery, using local labour with bicycles or motorcycles.
Abstract: Introduction To evaluate the relative effectiveness of tsetse control methods, their costs need to be analysed alongside their impact on tsetse populations. Very little has been published on the costs of methods specifically targeting human African trypanosomiasis. Methodology/Principal Findings In northern Uganda, a 250 km2 field trial was undertaken using small (0.5 X 0.25 m) insecticide-treated targets (“tiny targets”). Detailed cost recording accompanied every phase of the work. Costs were calculated for this operation as if managed by the Ugandan vector control services: removing purely research components of the work and applying local salaries. This calculation assumed that all resources are fully used, with no spare capacity. The full cost of the operation was assessed at USD 85.4 per km2, of which USD 55.7 or 65.2% were field costs, made up of three component activities (target deployment: 34.5%, trap monitoring: 10.6% and target maintenance: 20.1%). The remaining USD 29.7 or 34.8% of the costs were for preliminary studies and administration (tsetse surveys: 6.0%, sensitisation of local populations: 18.6% and office support: 10.2%). Targets accounted for only 12.9% of the total cost, other important cost components were labour (24.1%) and transport (34.6%). Discussion Comparison with the updated cost of historical HAT vector control projects and recent estimates indicates that this work represents a major reduction in cost levels. This is attributed not just to the low unit cost of tiny targets but also to the organisation of delivery, using local labour with bicycles or motorcycles. Sensitivity analyses were undertaken, investigating key prices and assumptions. It is believed that these costs are generalizable to other HAT foci, although in more remote areas, with denser vegetation and fewer people, costs would increase, as would be the case for other tsetse control techniques.

56 citations

Journal ArticleDOI
TL;DR: This molecular epidemiological study of Trypanosoma species in Northern Cameroon revealed active foci of trypanosomes in Dodeo and Gamba and will serve as a guide for setting the priorities of the government in the control of the disease.
Abstract: African trypanosomes are mainly transmitted through the bite of tsetse flies (Glossina spp.). The present study investigated the occurrence of pathogenic trypanosomes in tsetse flies and cattle in tsetse fly-infested areas of Northern Cameroon. Trypanosomes were identified using nested polymerase chain reaction (PCR) analysis of internal transcribed spacer 1 (ITS1) region, both by size estimation and sequencing of PCR products. Apparent density indices recorded in Gamba and Dodeo were 3.1 and 3.6 tsetse flies per trap and day, respectively. Trypanosoma prevalence infection rate for the tsetse fly gut (40%) and proboscis (19%) were recorded. Among the flies where trypanosomes were detected in the gut, 41.7% were positive for T. congolense and 14.6% for T. brucei ssp., whereas in the proboscis 36% harboured T. congolense and 62% contained T. vivax. T. grayi was highly prevalent in tsetse fly gut (58%). The most common mixed infections were the combination of T. congolense and T. grayi. Trypanosome prevalence rate in cattle blood was 6%. Among these, T. vivax represented 26%, T. congolense 35%, T. brucei ssp. 17% and T. theileri 17% of the infections. Surprisingly, in one case T. grayi was found in cattle. The mean packed cell volume (PCV) of cattle positive for trypanosomes was significantly lower (24.1 ± 5.6%; P < 0.05) than that of cattle in which trypanosomes were not detected (27.1 ± 4.9%). Interestingly, the occurrence of T. theileri or T. grayi DNA in cattle also correlated with low PCV at pathological levels. This molecular epidemiological study of Trypanosoma species in Northern Cameroon revealed active foci of trypanosomes in Dodeo and Gamba. These findings are relevant in assessing the status of trypanosomosis in these regions and will serve as a guide for setting the priorities of the government in the control of the disease.

36 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explore the ecology and epidemiology of trypanosoma spp. in wildlife and discuss the role of wildlife hosts in the transmission of AAT.
Abstract: While both human and animal trypanosomiasis continue to present as major human and animal public health constraints globally, detailed analyses of trypanosome wildlife reservoir hosts remain sparse. African animal trypanosomiasis (AAT) affects both livestock and wildlife carrying a significant risk of spillover and cross-transmission of species and strains between populations. Increased human activity together with pressure on land resources is increasing wildlife-livestock-human infections. Increasing proximity between human settlements and grazing lands to wildlife reserves and game parks only serves to exacerbate zoonotic risk. Communities living and maintaining livestock on the fringes of wildlife-rich ecosystems require to have in place methods of vector control for prevention of AAT transmission and for the treatment of their livestock. Major Trypanosoma spp. include Trypanosoma brucei rhodesiense, Trypanosoma brucei gambiense, and Trypanosoma cruzi, pathogenic for humans, and Trypanosoma vivax, Trypanosoma congolense, Trypanosoma evansi, Trypanosoma brucei brucei, Trypanosoma dionisii, Trypanosoma thomasbancrofti, Trypanosma elephantis, Trypanosoma vegrandis, Trypanosoma copemani, Trypanosoma irwini, Trypanosoma copemani, Trypanosoma gilletti, Trypanosoma theileri, Trypanosoma godfreyi, Trypansoma simiae, and Trypanosoma (Megatrypanum) pestanai. Wildlife hosts for the trypansomatidae include subfamilies of Bovinae, Suidae, Pantherinae, Equidae, Alcephinae, Cercopithecinae, Crocodilinae, Pteropodidae, Peramelidae, Sigmodontidae, and Meliphagidae. Wildlife species are generally considered tolerant to trypanosome infection following centuries of coexistence of vectors and wildlife hosts. Tolerance is influenced by age, sex, species, and physiological condition and parasite challenge. Cyclic transmission through Glossina species occurs for T. congolense, T. simiae, T. vivax, T. brucei, and T. b. rhodesiense, T. b. gambiense, and within Reduviid bugs for T. cruzi. T. evansi is mechanically transmitted, and T. vixax is also commonly transmitted by biting flies including tsetse. Wildlife animal species serve as long-term reservoirs of infection, but the delicate acquired balance between trypanotolerance and trypanosome challenge can be disrupted by an increase in challenge and/or the introduction of new more virulent species into the ecosystem. There is a need to protect wildlife, animal, and human populations from the infectious consequences of encroachment to preserve and protect these populations. In this review, we explore the ecology and epidemiology of Trypanosoma spp. in wildlife.

24 citations

Journal ArticleDOI
TL;DR: The findings show that targets made from black and blue fabrics covered with adhesive film render them equal to or more efficient than traps at capturing G. f.
Abstract: Background: Riverine species of tsetse are responsible for most human African trypanosomiasis (HAT) transmission and are also important vectors of animal trypanosomiasis. This study concerns the development of visual control devices for two such species, Glossina fuscipes fuscipes and Glossina tachinoides, at the eastern limits of their continental range. The goal was to determine the most long-lasting, practical and cost-effective visually attractive device that induces the strongest landing responses in these species for use as insecticide-impregnated tools in vector population suppression. Methods and Findings: Field trials were conducted in different seasons on G. f. fuscipes in Kenya, Ethiopia and the Sudan and on G. tachinoides in Ethiopia to measure the performance of traps and 2D targets of different sizes and colours, with and without chemical baits, at different population densities and under different environmental conditions. Adhesive film was used to enumerate flies at these remote locations to compare trapping efficiencies. The findings show that targets made from black and blue fabrics (either phthalogen or turquoise) covered with adhesive film render them equal to or more efficient than traps at capturing G. f. fuscipes and G. tachinoides. Biconical trap efficiency varied between 25% and 33% for the two species. Smaller 0.25 m60.25 m phthalogen blue-black targets proved more efficient than the regular 1 m 2 target for both species, by over six times for Glossina f. fuscipes and two times for G. tachinoides based on catches per m 2 . Overall, targets with a higher edge/surface area ratio were more efficient at capturing flies. Conclusions/Significance: Taking into account practical considerations and fly preferences for edges and colours, we propose a 0.560.75 m blue-black target as a simple cost-effective device for management of G. f. fuscipes and G. tachinoides, impregnated with insecticide for control and covered with adhesive film for population sampling.

13 citations