scispace - formally typeset
Search or ask a question
Author

Tushar Sakorikar

Other affiliations: Indian Institute of Science
Bio: Tushar Sakorikar is an academic researcher from Indian Institute of Technology Madras. The author has contributed to research in topics: Graphene & Microelectrode. The author has an hindex of 4, co-authored 12 publications receiving 62 citations. Previous affiliations of Tushar Sakorikar include Indian Institute of Science.
Topics: Graphene, Microelectrode, Oxide, Solar cell, Medicine

Papers
More filters
Journal ArticleDOI
TL;DR: It was observed that the addition of few multiwalled carbon nanotubes to an FLG improves the photocurrent by two-fold along with a highly stable response as compared to FLG alone.
Abstract: A novel approach is presented for achieving an enhanced photoresponse in a few layer graphene (FLG) based photodetector that is realized by introducing defect sites in the FLG. Fabrication induced wrinkle formation in graphene presented a four-fold enhancement in the photocurrent when compared to unfold FLG. Interestingly, it was observed that the addition of few multiwalled carbon nanotubes to an FLG improves the photocurrent by two-fold along with a highly stable response as compared to FLG alone.

26 citations

Journal ArticleDOI
TL;DR: A correction to this article has been published and is linked from the HTML version of this paper.
Abstract: We demonstrate that crack propagation in uniaxially strained reduced graphene oxide (rGO) films is substantially dependent on the film thickness, for films in the sub-micron regime. rGO film on flexible polydimethylsiloxane (PDMS) substrate develop quasi-periodic cracks upon application of strain. The crack density and crack width follow contrasting trends as film thickness is increased and the results are described in terms of a sequential cracking model. Further, these cracks also have a tendency to relax when the strain is released. These features are also reflected in the strain-dependent electrical dc and ac conductivity studies. For an optimal thickness (3-coat), the films behave as strain-resistant, while for all other values it becomes strain-responsive, attributed to a favorable combination of crack density and width. This study of the film thickness dependent response and the crack propagation mechanism under strain is a significant step for rationalizing the application of layered graphene-like systems for flexible optoelectronic and strain sensing applications. When the thickness is tuned for enhanced extent of crack propagation, strain-sensors with gauge factor up to ∼470 are realized with the same material. When thickness is chosen to suppress the crack propagation, strain-resistive flexible TiO2- rGO UV photoconductor is realized.

24 citations

Journal ArticleDOI
28 Sep 2021
TL;DR: In this article, a review of integrated micro-total analysis systems (μ-TAS) for personalized breast cancer therapeutics and associated challenges is presented, highlighting the approach required to realize their successful translation into clinical settings.
Abstract: Timely and accurate diagnosis of breast cancer is essential for efficient treatment and the best possible survival rates. Biosensors have emerged as a smart diagnostic platform for the detection of biomarkers specific to the onset, recurrence, and therapeutic drug monitoring of breast cancer. There have been exciting recent developments, including significant improvements in the validation, sensitivity, specificity, and integration of sample processing steps to develop point-of-care (POC) integrated micro-total analysis systems for clinical settings. The present review highlights various biosensing modalities (electrical, optical, piezoelectric, mass, and acoustic sensing). It provides deep insights into their design principles, signal amplification strategies, and comparative performance analysis. Finally, this review emphasizes the status of existing integrated micro-total analysis systems (μ-TAS) for personalized breast cancer therapeutics and associated challenges and outlines the approach required to realize their successful translation into clinical settings.

13 citations

Journal ArticleDOI
TL;DR: Temperature-dependent charge transport in reduced graphene oxide (rGO) films coated on flexible polydimethylsiloxane (PDMS) substrates which are subject to uniaxial strain can be reconciled based on mutually competing effects of two processes: thinning of graphene at the sites of periodic deformations and locally enhanced inter-flake coupling in these same regions which contributes to improved temperature-dependent conduction.
Abstract: We investigate temperature-dependent charge transport in reduced graphene oxide (rGO) films coated on flexible polydimethylsiloxane (PDMS) substrates which are subject to uniaxial strain. Variable strain, up to 10%, results in an anisotropic morphology comprising of quasi-periodic linear array of deformations which are oriented perpendicular to the direction of strain. The anisotropy is reflected in the charge transport measurements, when conduction in the direction parallel and perpendicular to the applied strain are compared. Temperature dependence of resistance is measured for different values of strain in the temperature interval 80–300 K. While the resistance increases significantly upon application of strain, the temperature-dependent response shows anomalous decrease in resistance ratio R 80 K/R 300 K upon application of strain. This observation of favorable conduction processes under strain is further corroborated by reduced activation energy analysis of the temperature-dependent transport data. These anomalous transport features can be reconciled based on mutually competing effects of two processes: (i) thinning of graphene at the sites of periodic deformations, which tends to enhance the overall resistance by a purely geometrical effect, and (ii) locally enhanced inter-flake coupling in these same regions which contributes to improved temperature-dependent conduction.

7 citations

Journal ArticleDOI
01 Mar 2020-Carbon
TL;DR: In this paper, the effect of geometrical confinement of reduced graphene oxide (rGO) films on strain-induced wrinkling patterns was studied, which strongly affects their electromechanical response.

6 citations


Cited by
More filters
Journal Article
TL;DR: This paper discusses how and why wrinkles/buckles form in various materials, and describes several examples from everyday life that demonstrate that wrinkling or buckling is indeed a commonplace phenomenon that spans a multitude of length scales.
Abstract: The English-language dictionary defines wrinkles as "small furrows, ridges, or creases on a normally smooth surface, caused by crumpling, folding, or shrinking". In this paper we review the scientific aspects of wrinkling and the related phenomenon of buckling. Specifically, we discuss how and why wrinkles/buckles form in various materials. We also describe several examples from everyday life, which demonstrate that wrinkling or buckling is indeed a commonplace phenomenon that spans a multitude of length scales. We will emphasize that wrinkling is not always a frustrating feature (e.g., wrinkles in human skin), as it can help to assemble new structures, understand important physical phenomena, and even assist in characterizing chief material properties.

670 citations

Journal ArticleDOI
TL;DR: In this article, a novel strategy to synthesize structurally, mechanically, electrically and optically anisotropic graphene aerogels (AN-GAs) by using gaseous hydrogen chloride to in situ solidify ordered graphene oxide liquid crystals followed by chemical reduction, supercritical fluid drying and annealing in an Ar atmosphere in sequence.
Abstract: To overcome fatal shortcomings of organic phase change materials (PCMs), such as leakage during work, low thermal conductivity and shortage of multiple driving ways, we propose a novel strategy to synthesize structurally, mechanically, electrically and optically anisotropic graphene aerogels (AN-GAs) by using gaseous hydrogen chloride to in situ solidify ordered graphene oxide liquid crystals followed by chemical reduction, supercritical fluid drying and annealing in an Ar atmosphere in sequence. The confined pore space and aligned wall structure of the resulting AN-GAs have benefited crystallization of organic phase change molecules and thus highly efficient phase change composites (PCCs) are fabricated with long durability and good strength. The resulting PCCs can also be driven either by applying a small voltage (1–3 V) with high electro-heat efficiency (up to 85%) or by irradiating with weak sunlight (0.8–1.0 sun) with high photo-heat efficiency (up to 77%).

166 citations

Journal ArticleDOI
01 Apr 2016-Small
TL;DR: This article provides a review of the use of carbon nanotubes in gas and vapor sensing and offers advantages in sensitivity, preparation of chip-based sensors and construction of electronic nose for selective detection of analytes of interest.
Abstract: The need to sense gases and vapors arises in numerous scenarios in industrial, environmental, security and medical applications. Traditionally, this activity has utilized bulky instruments to obtain both qualitative and quantitative information on the constituents of the gas mixture. It is ideal to use sensors for this purpose since they are smaller in size and less expensive; however, their performance in the field must match that of established analytical instruments in order to gain acceptance. In this regard, nanomaterials as sensing media offer advantages in sensitivity, preparation of chip-based sensors and construction of electronic nose for selective detection of analytes of interest. This article provides a review of the use of carbon nanotubes in gas and vapor sensing.

142 citations

Journal Article
TL;DR: In this article, the low temperature electron transport properties of chemically reduced graphene oxide (RGO) sheets with different carbon sp2 fractions of 55 to 80 % were investigated, and it was shown that in the low bias regime, the temperature (T) dependent resistance (R) of all the devices follow Efros-Shklovskii variable range hopping (ES-VRH) R ~ exp[(T(ES)/T)^1/2] with T(ES) decreasing from 30976 to 4225 K and electron localization length increasing from 0.46
Abstract: We investigate the low temperature electron transport properties of chemically reduced graphene oxide (RGO) sheets with different carbon sp2 fractions of 55 to 80 %. We show that in the low bias (Ohmic) regime, the temperature (T) dependent resistance (R) of all the devices follow Efros-Shklovskii variable range hopping (ES-VRH) R ~ exp[(T(ES)/T)^1/2] with T(ES) decreasing from 30976 to 4225 K and electron localization length increasing from 0.46 to 3.21 nm with increasing sp2 fraction. From our data, we predict that for the temperature range used in our study, Mott-VRH may not be observed even at 100 % sp2 fraction samples due to residual topological defects and structural disorders. From the localization length, we calculate a bandgap variation of our RGO from 1.43 to 0.21 eV with increasing sp2 fraction from 55 to 80 % which agrees remarkably well with theoretical prediction. We also show that, in the high bias regime, the hopping is field driven and the data follow R ~ exp[(E(0)/E)^1/2] providing further evidence of ES-VRH.

129 citations

Journal ArticleDOI
25 Feb 2019
TL;DR: An overview of categories of 2D materials is provided, which contains formation and fabrication methods of wrinkled patterns and relevant mechanisms, as well as the induced mechanical, electrical, thermal and optical properties.
Abstract: Recently, two-dimensional (2D) materials, including graphene, its derivatives, metal films, MXenes and transition metal dichalcogenides (TMDs), have been widely studied because of their tunable electronic structures and special electrical and optical properties. However, during the fabrication of these 2D materials with atomic thickness, formation of wrinkles or folds is unavoidable to enable their stable existence. Meaningfully, it is found that wrinkled structures simultaneously impose positive changes on the 2D materials. Specifically, the architecture of wrinkled structures in 2D materials additionally induces excellent properties, which are of great importance for their practical applications. In this review, we provide an overview of categories of 2D materials, which contains formation and fabrication methods of wrinkled patterns and relevant mechanisms, as well as the induced mechanical, electrical, thermal and optical properties. Furthermore, these properties are modifiable by controlling the surface topography or even by dynamically stretching the 2D materials. Wrinkling offers a platform for 2D materials to be applied in some promising fields such as field emitters, energy containers and suppliers, field effect transistors, hydrophobic surfaces, sensors for flexible electronics and artificial intelligence. Finally, the opportunities and challenges of wrinkled 2D materials in the near future are discussed.

108 citations