scispace - formally typeset
Search or ask a question

Showing papers by "Tuukka Petäjä published in 2012"


Journal ArticleDOI
31 Aug 2012-Science
TL;DR: Direct measurements show that ambient atmospheric particulate black carbon absorbs less solar radiation than theory suggested, suggesting that many climate models may be overestimating the amount of warming caused by black carbon emissions.
Abstract: Atmospheric black carbon (BC) warms Earth’s climate, and its reduction has been targeted for near-term climate change mitigation. Models that include forcing by BC assume internal mixing with non-BC aerosol components that enhance BC absorption, often by a factor of ~2; such model estimates have yet to be clearly validated through atmospheric observations. Here, direct in situ measurements of BC absorption enhancements ( E abs ) and mixing state are reported for two California regions. The observed E abs is small—6% on average at 532 nm—and increases weakly with photochemical aging. The E abs is less than predicted from observationally constrained theoretical calculations, suggesting that many climate models may overestimate warming by BC. These ambient observations stand in contrast to laboratory measurements that show substantial E abs for BC are possible.

562 citations


Journal ArticleDOI
09 Aug 2012-Nature
TL;DR: It is suggested that this new atmospherically relevant oxidation route is important relative to oxidation by the hydroxyl radical, at least at moderate concentrations of that radical.
Abstract: Atmospheric oxidation is a key phenomenon that connects atmospheric chemistry with globally challenging environmental issues, such as climate change, stratospheric ozone loss, acidification of soils and water, and health effects of air quality. Ozone, the hydroxyl radical and the nitrate radical are generally considered to be the dominant oxidants that initiate the removal of trace gases, including pollutants, from the atmosphere. Here we present atmospheric observations from a boreal forest region in Finland, supported by laboratory experiments and theoretical considerations, that allow us to identify another compound, probably a stabilized Criegee intermediate (a carbonyl oxide with two free-radical sites) or its derivative, which has a significant capacity to oxidize sulphur dioxide and potentially other trace gases. This compound probably enhances the reactivity of the atmosphere, particularly with regard to the production of sulphuric acid, and consequently atmospheric aerosol formation. Our findings suggest that this new atmospherically relevant oxidation route is important relative to oxidation by the hydroxyl radical, at least at moderate concentrations of that radical. We also find that the oxidation chemistry of this compound seems to be tightly linked to the presence of alkenes of biogenic origin.

421 citations


Journal ArticleDOI
TL;DR: This protocol describes the procedures for identifying new-particle-formation (NPF) events, and for determining the nucleation, formation and growth rates during such events under atmospheric conditions, and discusses the reliability of the methods used and requirements for proper measurements and data analysis.
Abstract: The formation of new atmospheric aerosol particles and their subsequent growth have been observed frequently at various locations all over the world. The atmospheric nucleation rate (or formation rate) and growth rate (GR) are key parameters to characterize the phenomenon. Recent progress in measurement techniques enables us to measure atmospheric nucleation at the size (mobility diameter) of 1.5 (±0.4) nm. The detection limit has decreased from 3 to 1 nm within the past 10 years. In this protocol, we describe the procedures for identifying new-particle-formation (NPF) events, and for determining the nucleation, formation and growth rates during such events under atmospheric conditions. We describe the present instrumentation, best practices and other tools used to investigate atmospheric nucleation and NPF at a certain mobility diameter (1.5, 2.0 or 3.0 nm). The key instruments comprise devices capable of measuring the number concentration of the formed nanoparticles and their size, such as a suite of modern condensation particle counters (CPCs) and air ion spectrometers, and devices for characterizing the pre-existing particle number concentration distribution, such as a differential mobility particle sizer (DMPS). We also discuss the reliability of the methods used and requirements for proper measurements and data analysis. The time scale for realizing this procedure is 1 year.

416 citations


Journal ArticleDOI
TL;DR: In this paper, the first ambient measurements using nitrate ion based Chemical Ionization with the Atmospheric Pressure interface Time-Of-Flight mass spectrometer (CI-APi-TOF) for sulphuric acid and neutral cluster detection are presented.
Abstract: . The first ambient measurements using nitrate ion based Chemical Ionization with the Atmospheric Pressure interface Time-Of-Flight mass spectrometer (CI-APi-TOF) for sulphuric acid and neutral cluster detection are presented. We have found CI-APi-TOF a highly stable and sensitive tool for molecular sulphuric acid detection. The lowest limit of detection for sulphuric acid was determined to be 3.6 × 104 molecules cm−3 for 15 min averaging. Signals from sulphuric acid clusters up to tetramer containing ammonia were also obtained but these were found to result from naturally charged clusters formed by ion induced clustering in the atmosphere during nucleation. Opposite to earlier studies with cluster mass spectrometers, we had no indication of neutral clusters. The reason is either less efficient charging of clusters in comparison to molecular sulphuric acid, or the low concentration of neutral clusters at our measurement site during these particular nucleation events. We show that utilizing high resolution mass spectrometry is crucial in separating the weak sulfuric acid cluster signal from other compounds.

353 citations


Journal ArticleDOI
TL;DR: In this paper, a synthesis of research indicates that the mechanisms controlling this growth depend on the size of the growing particle, and that dependence of particle growth mechanisms on particle size needs to be investigated more systematically.
Abstract: The growth of the smallest atmospheric particles to sizes at which they may act as seeds for cloud droplets is a key step linking aerosols to clouds and climate. A synthesis of research indicates that the mechanisms controlling this growth depend on the size of the growing particle. Aerosols have a strong, yet poorly quantified, effect on climate. The growth of the smallest atmospheric particles from diameters in the nanometre range to sizes at which they may act as seeds for cloud droplets is a key step linking aerosols to clouds and climate. In many environments, atmospheric nanoparticles grow by taking up organic compounds that are derived from biogenic hydrocarbon emissions. Several mechanisms may control this uptake. Condensation of low-volatility vapours and formation of organic salts probably dominate the very first steps of growth in particles close to 1 nm in diameter. As the particles grow further, formation of organic polymers and effects related to the phase of the particle probably become increasingly important. We suggest that dependence of particle growth mechanisms on particle size needs to be investigated more systematically.

320 citations


Journal ArticleDOI
TL;DR: In this paper, the authors synthesize the available scientific information connecting atmospheric nucleation with subsequent cloud condensation nuclei (CCN) formation and discuss the potential climatic implications.
Abstract: . This paper synthesizes the available scientific information connecting atmospheric nucleation with subsequent cloud condensation nuclei (CCN) formation. We review both observations and model studies related to this topic, and discuss the potential climatic implications. We conclude that CCN production associated with atmospheric nucleation is both frequent and widespread phenomenon in many types of continental boundary layers, and probably also over a large fraction of the free troposphere. The contribution of nucleation to the global CCN budget spans a relatively large uncertainty range, which, together with our poor understanding of aerosol-cloud interactions, results in major uncertainties in the radiative forcing by atmospheric aerosols. In order to better quantify the role of atmospheric nucleation in CCN formation and Earth System behavior, more information is needed on (i) the factors controlling atmospheric CCN production and (ii) the properties of both primary and secondary CCN and their interconnections. In future investigations, more emphasis should be put on combining field measurements with regional and large-scale model studies.

267 citations


Journal ArticleDOI
TL;DR: In this paper, high molecular weight (300-650 Da) naturally charged negative ions have previously been observed at a boreal forest site in Hyytiala, Finland and were identified as clusters of the nitrate ion (NO3−) and α-pinene oxidation products reaching oxygen to carbon ratios of 0.7-1.3, while retaining most of the initial ten carbon atoms.
Abstract: . High molecular weight (300–650 Da) naturally charged negative ions have previously been observed at a boreal forest site in Hyytiala, Finland. The long-term measurements conducted in this work showed that these ions are observed practically every night between spring and autumn in Hyytiala. The ambient mass spectral patterns could be reproduced in striking detail during additional measurements of α-pinene (C10H16) oxidation at low-OH conditions in the Julich Plant Atmosphere Chamber (JPAC). The ions were identified as clusters of the nitrate ion (NO3−) and α-pinene oxidation products reaching oxygen to carbon ratios of 0.7–1.3, while retaining most of the initial ten carbon atoms. Attributing the ions to clusters instead of single molecules was based on additional observations of the same extremely oxidized organics in clusters with HSO4− (Hyytiala) and C3F5O2− (JPAC). The most abundant products in the ion spectra were identified as C10H14O7, C10H14O9, C10H16O9, and C10H14O11. The mechanism responsible for forming these molecules is still not clear, but the initial reaction is most likely ozone attack at the double bond, as the ions are mainly observed under dark conditions. β-pinene also formed highly oxidized products under the same conditions, but less efficiently, and mainly C9 compounds which were not observed in Hyytiala, where β-pinene on average is 4–5 times less abundant than α-pinene. Further, to explain the high O/C together with the relatively high H/C, we propose that geminal diols and/or hydroperoxide groups may be important. We estimate that the night-time concentration of the sum of the neutral extremely oxidized products is on the order of 0.1–1 ppt (~106–107 molec cm−3). This is in a similar range as the amount of gaseous H2SO4 in Hyytiala during day-time. As these highly oxidized organics are roughly 3 times heavier, likely with extremely low vapor pressures, their role in the initial steps of new aerosol particle formation and growth may be important and needs to be explored in more detail in the future.

193 citations


Journal ArticleDOI
TL;DR: In this article, the formation rate of clusters with two sulphuric acid and two amine molecules (JA2B2) was modelled at varying atmospherically relevant conditions with respect to concentrations of sulfate acid ([H2SO4]), dimethylamine ([DMA]) and trimethyamine ([TMA]), temperature and relative humidity (RH).
Abstract: . Sulphuric acid is a key component in atmospheric new particle formation. However, sulphuric acid alone does not form stable enough clusters to initiate particle formation in atmospheric conditions. Strong bases, such as amines, have been suggested to stabilize sulphuric acid clusters and thus participate in particle formation. We modelled the formation rate of clusters with two sulphuric acid and two amine molecules (JA2B2) at varying atmospherically relevant conditions with respect to concentrations of sulphuric acid ([H2SO4]), dimethylamine ([DMA]) and trimethylamine ([TMA]), temperature and relative humidity (RH). We also tested how the model results change if we assume that the clusters with two sulphuric acid and two amine molecules would act as seeds for heterogeneous nucleation of organic vapours (other than amines) with higher atmospheric concentrations than sulphuric acid. The modelled formation rates JA2B2 were functions of sulphuric acid concentration with close to quadratic dependence, which is in good agreement with atmospheric observations of the connection between the particle formation rate and sulphuric acid concentration. The coefficients KA2B2 connecting the cluster formation rate and sulphuric acid concentrations as JA2B2=KA2B2[H2SO4]2 turned out to depend also on amine concentrations, temperature and relative humidity. We compared the modelled coefficients KA2B2 with the corresponding coefficients calculated from the atmospheric observations (Kobs) from environments with varying temperatures and levels of anthropogenic influence. By taking into account the modelled behaviour of JA2B2 as a function of [H2SO4], temperature and RH, the atmospheric particle formation rate was reproduced more closely than with the traditional semi-empirical formulae based on sulphuric acid concentration only. The formation rates of clusters with two sulphuric acid and two amine molecules with different amine compositions (DMA or TMA or one of both) had different responses to varying meteorological conditions and concentrations of vapours participating in particle formation. The observed inverse proportionality of the coefficient Kobs with RH and temperature agreed best with the modelled coefficient KA2B2 related to formation of a cluster with two H2SO4 and one or two TMA molecules, assuming that these clusters can grow in collisions with abundant organic vapour molecules. In case this assumption is valid, our results suggest that the formation rate of clusters with at least two of both sulphuric acid and amine molecules might be the rate-limiting step for atmospheric particle formation. More generally, our analysis elucidates the sensitivity of the atmospheric particle formation rate to meteorological variables and concentrations of vapours participating in particle formation (also other than H2SO4).

118 citations


Journal ArticleDOI
TL;DR: The Sea Sweep was deployed alongside R/V Atlantis off the coast of California during May of 2010 as mentioned in this paper, where the vessel was used to collect samples from the ocean surface with stainless steel frits and swept into a hood/vacuum hose to feed a suite of aerosol instrumentation.
Abstract: [1] Reliable characterization of particles freshly emitted from the ocean surface requires a sampling method that is able to isolate those particles and prevent them from interacting with ambient gases and particles. Here we report measurements of particles directly emitted from the ocean using a newly developed in situ particle generator (Sea Sweep). The Sea Sweep was deployed alongside R/V Atlantis off the coast of California during May of 2010. Bubbles were generated 0.75 m below the ocean surface with stainless steel frits and swept into a hood/vacuum hose to feed a suite of aerosol instrumentation on board the ship. The number size distribution of the directly emitted, nascent particles had a dominant mode at 55–60 nm (dry diameter) and secondary modes at 30–40 nm and 200–300 nm. The nascent aerosol was not volatile at 230°C and was not enriched in SO4=, Ca++, K+, or Mg++above that found in surface seawater. The organic component of the nascent aerosol (7% of the dry submicrometer mass) volatilized at a temperature between 230 and 600°C. The submicrometer organic aerosol characterized by mass spectrometry was dominated by non-oxygenated hydrocarbons. The nascent aerosol at 50, 100, and 145 nm dry diameter behaved hygroscopically like an internal mixture of sea salt with a small organic component. The CCN/CN activation ratio for 60 nm Sea Sweep particles was near 1 for all supersaturations of 0.3 and higher indicating that all of the particles took up water and grew to cloud drop size. The nascent organic aerosol mass fraction did not increase in regions of higher surface seawater chlorophyll but did show a positive correlation with seawater dimethylsulfide (DMS).

99 citations


Journal ArticleDOI
TL;DR: In this article, the results from ozonolysis of 2,3-dimethyl-2-butene (TME), trans-2butene and 1-methyl-cyclohexene (MCH) carried out in an atmospheric pressure flow tube at 293 ± 0.5 K and RH = 50% were reported.
Abstract: The gas-phase reaction of ozone with olefins represents an important path for the conversion of unsaturated hydrocarbons in the atmosphere. The current interest is focused on the formation of stabilized Criegee intermediates (sCI) and possible further reactions of sCI. We report results from the ozonolysis of 2,3-dimethyl-2-butene (TME), trans-2-butene and 1-methyl-cyclohexene (MCH) carried out in an atmospheric pressure flow tube at 293 ± 0.5 K and RH = 50% using chemical ionization atmospheric pressure interface time-of-flight (CI-APi-TOF) mass spectrometry to detect H2SO4 produced from SO2 oxidation by sCI. The yields of sCI were found to be in good agreement with recently observed data: 0.62 ± 0.28 (TME), 0.53 ± 0.24 (trans-2-butene) and 0.16 ± 0.07 (MCH). The rate coefficients for sCI + SO2 from our experiment, (0.9–7.7) × 10–13 cm3 molecule–1 s–1, are within the range of recommendations from indirect determinations as given so far in the literature. Our study helps to assess the importance of sCI in...

84 citations


Journal ArticleDOI
TL;DR: In this paper, the authors performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to the formation and early growth of nucleated particles and found that both condensation of oxidized organic compounds and reactive uptake contribute to particle growth.
Abstract: . Lack of knowledge about the mechanisms underlying new particle formation and their subsequent growth is one of the main causes for the large uncertainty in estimating the radiative forcing of atmospheric aerosols in global models. We performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to the formation and early growth of nucleated particles. Distinct experiments in the presence of two different organic precursors (1,3,5-trimethylbenzene and α-pinene) showed the ability of these compounds to reproduce the formation rates observed in the low troposphere. These results were obtained measuring the sulfuric acid concentrations with two chemical ionization mass spectrometers confirming the results of a previous study which modeled the sulfuric acid concentrations in presence of 1,3,5-trimethylbenzene. New analysis methods were applied to the data collected with a condensation particle counter battery and a scanning mobility particle sizer, allowing the assessment of the size resolved growth rates of freshly nucleated particles. The effect of organic vapors on particle growth was investigated by means of the growth rate enhancement factor (Γ), defined as the ratio between the measured growth rate in the presence of α-pinene and the kinetically limited growth rate of the sulfuric acid and water system. The observed Γ values indicate that the growth is already dominated by organic compounds at particle diameters of 2 nm. Both the absolute growth rates and Γ showed a strong dependence on particle size, supporting the nano-Kohler theory. Moreover, the separation of the contributions from sulfuric acid and organic compounds to particle growth reveals that the organic contribution seems to be enhanced by the sulfuric acid concentration. Finally, the size resolved growth analysis indicates that both condensation of oxidized organic compounds and reactive uptake contribute to particle growth.

Journal ArticleDOI
TL;DR: In this article, the authors describe the diurnal behavior of the submicron aerosol and rely on total particle number concentration, particle number size distribution, light scattering and light absorption measurements.
Abstract: . Large conurbations are a significant source of the anthropogenic pollution and demographic differences between cities that result in a different pollution burden. The metropolitan area of Sao Paulo (MASP, population 20 million) accounts for one fifth of the Brazilian vehicular fleet. A feature of MASP is the amount of ethanol used by the vehicular fleet, known to exacerbate air quality. The study describes the diurnal behaviour of the submicron aerosol and relies on total particle number concentration, particle number size distribution, light scattering and light absorption measurements. Modelled planetary boundary layer (PBL) depth and air mass movement data were used to aid the interpretation. During morning rush-hour, stagnant air and a shallow PBL height favour the accumulation of aerosol pollution. During clear-sky conditions, there was a wind shift towards the edge of the city indicating a heat island effect with implications on particulate pollution levels at the site. The median total particle number concentration for the submicron aerosol typically varied in the range 1.6 × 104–3.2 × 104 cm−3 frequently exceeding 4 × 104 cm−3 during the day. During weekdays, nucleation-mode particles are responsible for most of the particles by numbers. The highest concentrations of total particle number concentrations and black carbon (BC) were observed on Fridays. Median diurnal values for light absorption and light scattering (at 637 nm wavelength) varied in the range 12–33 Mm−1 and 21–64 Mm−1, respectively. The former one is equal to 1.8–5.0 μg m−3 of BC. The growth of the PBL, from the morning rush-hour until noon, is consistent with the diurnal cycle of BC mass concentrations. Weekday hourly median single-scattering albedo (ω0) varied in the range 0.59–0.76. Overall, this suggests a top of atmosphere (TOA) warming effect. However, considering the low surface reflectance of urban areas, for the given range of ω0, the TOA radiative forcing can be either positive or negative for the sources within the MASP. On the average, weekend ω0 values were 0.074 higher than during weekdays. During 11% of the days, new particle formation (NPF) events occurred. The analysed events growth rates ranged between 9 and 25 nm h−1. Sulphuric acid proxy concentrations calculated for the site were less than 5% of the concentration needed to explain the observed growth. Thus, other vapours are likely contributors to the observed growth.

Journal ArticleDOI
TL;DR: In this paper, the sources of fine organic aerosol (OA) in the boreal forest, based on measurements including both filter sampling (PM1) and online methods and carried out during a one-month campaign held in Hyytiala, Finland, in spring 2007.
Abstract: . The study investigates the sources of fine organic aerosol (OA) in the boreal forest, based on measurements including both filter sampling (PM1) and online methods and carried out during a one-month campaign held in Hyytiala, Finland, in spring 2007. Two aerosol mass spectrometers (Q-AMS, ToF-AMS) were employed to measure on-line concentrations of major non-refractory aerosol species, while the water extracts of the filter samples were analyzed by nuclear magnetic resonance (NMR) spectroscopy for organic functional group characterization of the polar organic fraction of the aerosol. AMS and NMR spectra were processed separately by non-negative factorization algorithms, in order to apportion the main components underlying the submicrometer organic aerosol composition and depict them in terms of both mass fragmentation patterns and functional group compositions. The NMR results supported the AMS speciation of oxidized organic aerosol (OOA) into two main fractions, which could be generally labelled as more and less oxidized organics. The more oxidized component was characterized by a mass spectrum dominated by the m/z 44 peak, and in parallel by a NMR spectrum showing aromatic and aliphatic backbones highly substituted with oxygenated functional groups (carbonyls/carboxyls and hydroxyls). Such component, contributing on average 50% of the OA mass throughout the observing period, was associated with pollution outbreaks from the Central Europe. The less oxidized component was enhanced in concomitance with air masses originating from the North-to-West sector, in agreement with previous investigations conducted at this site. NMR factor analysis was able to separate two distinct components under the less oxidized fraction of OA. One of these NMR-factors was associated with the formation of terrestrial biogenic secondary organic aerosol (BSOA), based on the comparison with spectral profiles obtained from laboratory experiments of terpenes photo-oxidation. The second NMR factor associated with western air masses was linked to biogenic marine sources, and was enriched in low-molecular weight aliphatic amines. Such findings provide evidence of at least two independent sources originating biogenic organic aerosols in Hyytiala by oxidation and condensation mechanisms: reactive terpenes emitted by the boreal forest and compounds of marine origin, with the latter relatively more important when predominantly polar air masses reach the site. This study is an example of how spectroscopic techniques, such as proton NMR, can add functional group specificity for certain chemical features (like aromatics) of OA with respect to AMS. They can therefore be profitably exploited to complement aerosol mass spectrometric measurements in organic source apportionment studies.

Journal ArticleDOI
TL;DR: In this paper, the authors used a stochastic Lagrangian transport model to study the effect of chemical degradation on above canopy fluxes of chemically reactive species, such as isoprene, α-pinene, and β-caryophyllene.
Abstract: . In the analyses of VOC fluxes measured above plant canopies, one usually assumes the flux above canopy to equal the exchange at the surface. Thus one assumes the chemical degradation to be much slower than the turbulent transport. We used a stochastic Lagrangian transport model in which the chemical degradation was described as first order decay in order to study the effect of the chemical degradation on above canopy fluxes of chemically reactive species. With the model we explored the sensitivity of the ratio of the above canopy flux to the surface emission on several parameters such as chemical lifetime of the compound, friction velocity, stability, and canopy density. Our results show that friction velocity and chemical lifetime affected the loss during transport the most. The canopy density had a significant effect if the chemically reactive compound was emitted from the forest floor. We used the results of the simulations together with oxidant data measured during HUMPPA-COPEC-2010 campaign at a Scots pine site to estimate the effect of the chemistry on fluxes of three typical biogenic VOCs, isoprene, α-pinene, and β-caryophyllene. Of these, the chemical degradation had a major effect on the fluxes of the most reactive species β-caryophyllene, while the fluxes of α-pinene were affected during nighttime. For these two compounds representing the mono- and sesquiterpenes groups, the effect of chemical degradation had also a significant diurnal cycle with the highest chemical loss at night. The different day and night time loss terms need to be accounted for, when measured fluxes of reactive compounds are used to reveal relations between primary emission and environmental parameters.

Journal ArticleDOI
TL;DR: The important first steps leading to secondary organic aerosol (SOA) particle nucleation and growth from terpene oxidation are discussed, showing that, as viewed by coherent vibrational spectroscopy, the chemical composition of the surface region of aerosol particles having sizes of 1 μm and lower appears to be close to size-invariant.
Abstract: This article summarizes and compares the analysis of the surfaces of natural aerosol particles from three different forest environments by vibrational sum frequency generation. The experiments were carried out directly on filter and impactor substrates, without the need for sample preconcentration, manipulation, or destruction. We discuss the important first steps leading to secondary organic aerosol (SOA) particle nucleation and growth from terpene oxidation by showing that, as viewed by coherent vibrational spectroscopy, the chemical composition of the surface region of aerosol particles having sizes of 1 μm and lower appears to be close to size-invariant. We also discuss the concept of molecular chirality as a chemical marker that could be useful for quantifying how chemical constituents in the SOA gas phase and the SOA particle phase are related in time. Finally, we describe how the combination of multiple disciplines, such as aerosol science, advanced vibrational spectroscopy, meteorology, and chemis...

Journal ArticleDOI
Abstract: . The volatility of submicron atmospheric aerosol particles was investigated at a boreal forest site in Hyytiala, Finland from January 2008 to May 2010. These long-term observations allowed for studying the seasonal behavior of aerosol evaporation with a special focus on compounds that remained in the aerosol phase at 280 °C. The temperature-response of evaporation was also studied by heating the aerosol sample step-wise to six temperatures ranging from 80 °C to 280 °C. The mass fraction remaining after heating (MFR) was determined from the measured particle number size distributions before and after heating assuming a constant particle density (1.6 g cm−3). On average 19% of the total aerosol mass remained in the particulate phase at 280 °C. The particles evaporated less at low ambient temperatures during winter as compared with the warmer months. Black carbon (BC) fraction of aerosol mass correlated positively with the MFR at 280 °C, but could not explain it completely: most of the time a notable fraction of this non-volatile residual was something other than BC. Using additional information on ambient meteorological conditions and results from an Aerodyne aerosol mass spectrometer (AMS), the chemical composition of MFR at 280 °C and its seasonal behavior was further examined. Correlation analysis with ambient temperature and mass fractions of polycyclic aromatic hydrocarbons (PAHs) indicated that MFR at 280 °C is probably affected by anthropogenic emissions. On the other hand, results from the AMS analysis suggested that there may be very low-volatile organics, possibly organonitrates, in the non-volatile (at 280 °C) fraction of aerosol mass.

Journal ArticleDOI
15 Aug 2012-Talanta
TL;DR: From three different ionization techniques studied electrospray ionization was superior in terms of sensitivity, linearity, repeatability and reproducibility over atmospheric pressure chemical ionization and photoionization for the target analytes.

Journal ArticleDOI
TL;DR: In this article, an Extended Kalman Filter (EKF) is used to estimate particle size distributions from observations, where the prior state estimate is updated with size-segregating measurements from Differential Mobility Particle Sizer (DMPS) and Aerodynamic ParticleSizer (APS) as well as integrating measurements from a nephelometer.
Abstract: . Extended Kalman Filter (EKF) is used to estimate particle size distributions from observations. The focus here is on the practical application of EKF to simultaneously merge information from different types of experimental instruments. Every 10 min, the prior state estimate is updated with size-segregating measurements from Differential Mobility Particle Sizer (DMPS) and Aerodynamic Particle Sizer (APS) as well as integrating measurements from a nephelometer. Error covariances are approximate in our EKF implementation. The observation operator assumes a constant particle density and refractive index. The state estimates are compared to particle size distributions that are a composite of DMPS and APS measurements. The impact of each instrument on the size distribution estimate is studied. Kalman Filtering of DMPS and APS yielded a temporally consistent state estimate. This state estimate is continuous over the overlapping size range of DMPS and APS. Inclusion of the integrating measurements further reduces the effect of measurement noise. Even with the present approximations, EKF is shown to be a very promising method to estimate particle size distribution with observations from different types of instruments.

Journal ArticleDOI
TL;DR: In this article, the authors show in-situ observations onboard a hot air balloon conducted in Central Finland together with regional dispersion modelling with SILAM-model during the eruption, the modeled and measured mass concentrations were in a qualitative agreement but the exact elevation of the layer was slightly distorted.

Journal ArticleDOI
TL;DR: The first dataset for summertime boreal forest concentrations of two atmospherically relevant α-dicarbonyl compounds, glyoxal (Gly) and methylglyoxal(Mgly) on PM 2.5 aerosol was obtained during the HUMPPA-COPEC-2010 field measurement intensive in Hyytiala, Finland as discussed by the authors.
Abstract: . The first dataset for summertime boreal forest concentrations of two atmospherically relevant α-dicarbonyl compounds, glyoxal (Gly) and methylglyoxal (Mgly) on PM 2.5 aerosol was obtained during the HUMPPA-COPEC-2010 field measurement intensive in Hyytiala, Finland. Anthropogenic influences over the course of the campaign were identified using trace gas signatures and aerosol particle chemical composition analysis. The data evaluation allowed the identification of different events such as urban pollution plumes, biomass burning and sawmill emissions as sources of high Gly and Mgly concentrations. Mean aerosol concentrations during periods of biogenic influence were 0.81 ng m −3 for Gly and 0.31 ng m −3 for Mgly. Mgly was generally less abundant in PM 2.5 , probably due to its shorter photolysis lifetime and less effective partitioning into the particle phase due to its smaller effective Henry's Law constant compared to Gly. This is in contrast with previous urban studies which show significantly more Mgly than Gly. Peak concentrations for Gly coincided with nearby sources, e.g. high VOC emissions from nearby sawmills, urban pollution plumes from the city of Tampere located 50 km southwest of the sampling site and biomass burning emissions from wildfires. Calculated ratios of Gly in PM 2.5 and total organic matter in PM 1 aerosols indicate higher values in less aged aerosols. Irreversible processing of Gly in the particle phase, e.g. via oxidation by OH radicals, organo sulfate or imidazole formation are processes currently discussed in the literature which could likely explain these findings.

Journal ArticleDOI
TL;DR: In this article, the maximum rate change of ultrafine particle concentrations as observed close to the surface is always preceded by breakdown of the nocturnal inversion and enhancement of vertical mixing and simulated particle size distributions exhibit greatest accord with surface observations during and subsequent to nucleation only when initialized with a particle size distribution representative of clear atmospheric conditions, rather than the in situ (ground-level) particle distribution.
Abstract: . New particle formation has been observed at a number of ground-based measurement sites. Prior research has provided evidence that this new particle formation, while observed in the near-surface layer, is actually occurring in atmospheric layers above the surface and appears to be focused in or close to the residual layer formed by the nocturnal inversion. Here, we present both observations and modeling for southern Indiana which support this postulate. Based on simulations with a detailed aerosol dynamics model and the Weather Research and Forecasting model, along with data from ground-based remote sensing instruments and detailed gas and particle phase measurements, we show evidence that (i) the maximum rate change of ultrafine particle concentrations as observed close to the surface is always preceded by breakdown of the nocturnal inversion and enhancement of vertical mixing and (ii) simulated particle size distributions exhibit greatest accord with surface observations during and subsequent to nucleation only when initialized with a particle size distribution representative of clear atmospheric conditions, rather than the in situ (ground-level) particle size distribution.

Journal ArticleDOI
TL;DR: In this paper, the chemical composition of the atmospheric aerosol particles is analyzed using both supervised and non-supervised pattern recognition techniques, such as hierarchical cluster analysis and principal component analysis, and the reliability of these results is proved using a supervised pattern recognition technique such as soft independent modeling of class analogy.

Journal ArticleDOI
TL;DR: In this article, the average charging state of aerosol populations was determined using an Ion-DMPS in Helsinki, Finland between December 2008 and February 2010, and the ion-induced nucleation fraction was estimated to be around 1.3 % ± 0.4 % at 2 nm and 1.5 % at 1.4 nm, on average.
Abstract: . The charging state of aerosol populations was determined using an Ion-DMPS in Helsinki, Finland between December 2008 and February 2010. We extrapolated the charging state and calculated the ion-induced nucleation fraction to be around 1.3 % ± 0.4 % at 2 nm and 1.3 % ± 0.5 % at 1.5 nm, on average. We present a new method to retrieve the average charging state for a new particle formation event, at a given size and polarity. We improve the uncertainty assessment and fitting technique used previously with an Ion-DMPS. We also use a new theoretical framework that allows for different concentrations of small ions for different polarities (polarity asymmetry). We extrapolate the ion-induced fraction using polarity symmetry and asymmetry. Finally, a method to calculate the growth rates from the behaviour of the charging state as a function of the particle diameter using polarity symmetry and asymmetry is presented and used on a selection of new particle formation events.

Journal ArticleDOI
TL;DR: In this paper, Extended Kalman Filter (EKF) is introduced as a method to estimate aerosol particle number size distributions from multiple simultaneous observations and validated by calculating the bias and the standard deviation for the estimated size distributions with respect to the raw measurements.
Abstract: . Aerosol characteristics can be measured with different instruments providing observations that are not trivially inter-comparable. Extended Kalman Filter (EKF) is introduced here as a method to estimate aerosol particle number size distributions from multiple simultaneous observations. The focus here in Part 1 of the work was on general aspects of EKF in the context of Differential Mobility Particle Sizer (DMPS) measurements. Additional instruments and their implementations are discussed in Part 2 of the work. University of Helsinki Multi-component Aerosol model (UHMA) is used to propagate the size distribution in time. At each observation time (10 min apart), the time evolved state is updated with the raw particle mobility distributions, measured with two DMPS systems. EKF approach was validated by calculating the bias and the standard deviation for the estimated size distributions with respect to the raw measurements. These were compared to corresponding bias and standard deviation values for particle number size distributions obtained from raw measurements by a inversion of the instrument kernel matrix method. Despite the assumptions made in the EKF implementation, EKF was found to be more accurate than the inversion of the instrument kernel matrix in terms of bias, and compatible in terms of standard deviation. Potential further improvements of the EKF implementation are discussed.


Journal ArticleDOI
TL;DR: In this paper, the ferroelectric transition of (NH4)2SO4 precipitated during the freezing of aqueous ammonium sulfate droplets was investigated by means of differential scanning calorimetry (DSC).
Abstract: The ferroelectric transition of (NH4)2SO4 precipitated during the freezing of aqueous ammonium sulfate droplets is investigated by means of differential scanning calorimetry (DSC). Below 223 K ammonium sulfate precipitates into ferroelectric crystals from (single) millimeter-sized and (emulsified) large micrometer-sized droplets. Upon subsequent warming, the ferro- to paraelectric (F → P) transition is observed at ∼223 K. In the case of (emulsified) small micrometer-sized droplets, (NH4)2SO4 precipitates into the paraelectric phase, and the F → P transition is absent. Since the mass sensitivity of the DSC instrument is demonstrated to be high enough to resolve the possible F → P transition of (NH4)2SO4 precipitated in small-sized droplets, this suggests that (NH4)2SO4 crystals precipitated from small micrometer-sized droplets are smaller than the critical size, below which ferroelectric ammonium sulfate does not exist. We do not know the exact critical size, but from independent measurements on (NH4)2SO4 ...

Journal ArticleDOI
TL;DR: A water-based condensation particle counter (CPC) TSI 3785 is a new step for the ultrafine particle measurement technique as discussed by the authors, which can be used for particle detection.
Abstract: A water-based condensation particle counter (CPC) TSI 3785 is a new step for the ultrafine particle measurement technique. A new instrument was examined in this study. Detection efficiency was investigated experimentally using different temperatures of the saturator and of the growth tube. The experiments showed that detection efficiency can be improved by increasing the temperature of the growth tube and decreasing the saturator temperature. Fitting a two-free parameter equation to the experimental data, the cut-sizes D50% were determined. The determined cut-sizes were comparable with the other three widely used fitting equations. The cut-sizes were studied by changing the growth tube temperature from 40 to 65 °C and varying the saturator temperature from 10 to 30 °C. For the purpose of the study, the instrument operation regime (saturator and growth tube temperatures) can be optimised by selecting the needed cut-size. The cut-sizes can be changed in a wide range. The smallest detected cut-size D50% was 4.2 nm, and the largest 14.6 nm. In the default operation regime, the instrument cut-size was 5.9 nm. The detection efficiency of the studied TSI CPC 3785 was compared with the ultrafine TSI CPC 3786. The results showed that the studied CPC can be optimised to the regime having a smaller cut-size than the cut-size of the ultrafine CPC in the default regime. Thus, the tested TSI CPC 3785 had the lowest detection limit (D50%) of 4.2 nm, and the TSI CPC 3786 had 4.6 nm for the silver particles.