scispace - formally typeset
Search or ask a question
Author

Tuukka Petäjä

Bio: Tuukka Petäjä is an academic researcher from University of Helsinki. The author has contributed to research in topics: Aerosol & Particle. The author has an hindex of 82, co-authored 526 publications receiving 30572 citations. Previous affiliations of Tuukka Petäjä include Helsinki Institute of Physics & National Center for Atmospheric Research.


Papers
More filters
Journal Article
TL;DR: 6), mikael ehn1), hannele hakola2), Pertti hari3), Kari hartonen5), Kaarle hameri1), teemu holtta1)3), heikki Junninen1), leena Jarvi1), theo Kurten1)5), antti lauri1), tuomas laurila2), Katrianne lehtipalo1)7).
Abstract: markku Kulmala1)*, hanna K. lappalainen1)2), Jaana Back1)3), ari laaksonen2)4), eero nikinmaa3), marja-liisa riekkola5), timo vesala1), Yrjo viisanen2), tuula aalto2), michael Boy1), miikka Dal maso6), mikael ehn1), hannele hakola2), Pertti hari3), Kari hartonen5), Kaarle hameri1), teemu holtta1)3), heikki Junninen1), leena Jarvi1), theo Kurten1)5), antti lauri1), tuomas laurila2), Katrianne lehtipalo1)7), heikki lihavainen2), anna lintunen3), ivan mammarella1), hanna e. manninen1), tuukka Petaja1), mari Pihlatie1), Jukka Pumpanen3), Janne rinne1), sami romakkaniemi4), taina ruuskanen1), mikko sipila1), sanna sorvari1)2), hanna vehkamaki1), annele virtanen4), Douglas r. Worsnop1)2)4)8) and veli-matti Kerminen1)

3 citations

Journal Article
TL;DR: This paper aims to demonstrate the efforts towards in-situ applicability of Ecosystems and Environment Research Programme (HELSUS) in Finland, which has shown real-time changes in the response to climate change over time.
Abstract: 1) Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, Ferrara 44121, Italy (*corresponding author’s e-mail: marco.milardi@unife.it) 2) Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, P.O. Box 64, FI-00014 University of Helsinki, Finland 3) Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences and Helsinki Institute of Sustainability Science (HELSUS), P.O. Box 65, FI-00014 University of Helsinki, Finland

3 citations

Journal ArticleDOI
TL;DR: Integrative and Comprehensive Understanding on Polar Environments (iCUPE) project developed 24 novel datasets utilizing in-situ observational capacities within the Arctic or remote sensing observations from ground or from space as discussed by the authors .

3 citations

Posted ContentDOI
TL;DR: In this article, the seasonal and diurnal variations of terpenoid and OVOC concentrations as well as their relationship with meteorological factors were investigated during two years at a boreal forest site in Hyytiala, Finland, using in situ gas chromatograph-mass spectrometers.
Abstract: . Concentrations of terpenoids (isoprene, monoterpenes, sesquiterpenes) and oxygenated volatile organic compounds (OVOCs, i.e. aldehydes, alcohols, acetates and volatile organic acids) were investigated during two years at a boreal forest site in Hyytiala, Finland, using in situ gas chromatograph-mass spectrometers (GC-MS). Seasonal and diurnal variations of terpenoid and OVOC concentrations as well as their relationship with meteorological factors were studied. Of the studied VOCs, C 2 -C 7 unbranched volatile organic acids (VOAs) were found to have the highest concentrations mainly due to their low reactivity. Of the terpenoids, monoterpenes (MTs) had highest concentrations at the site, but also 7 different highly reactive sesquiterpenes (SQTs) were detected. Monthly and daily mean concentrations of most terpenoids, aldehydes and VOAs were found to be highly dependent on the temperature. Highest exponential correlation with temperature was found for a SQT (β-caryophyllene) in summer. The diurnal variations of the concentrations could be explained by sources, sinks and vertical mixing. Especially the diurnal variations of MT concentrations were strongly affected by vertical mixing. Based on the temperature correlations and mixing layer height simple proxies were developed for estimating MT and SQT concentrations. To estimate the importance of different compound groups and compounds for the local atmospheric chemistry, reactivity with main oxidants (OH, NO 3 and O 3 ) and production rates of oxidation products (OxPR) were calculated. MTs dominated OH and NO 3 radical chemistry, but SQTs had a major impact on ozone chemistry, even though concentrations of SQT were 30 times lower than MT concentrations. SQTs were the most important also for the production of oxidation products. Since SQTs have high secondary organic aerosol (SOA) yields, results clearly indicate the importance of SQTs for local SOA production.

3 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Results of older bio-kinetic studies with NSPs and newer epidemiologic and toxicologic studies with airborne ultrafine particles can be viewed as the basis for the expanding field of nanotoxicology, which can be defined as safety evaluation of engineered nanostructures and nanodevices.
Abstract: Although humans have been exposed to airborne nanosized particles (NSPs; < 100 nm) throughout their evolutionary stages, such exposure has increased dramatically over the last century due to anthropogenic sources. The rapidly developing field of nanotechnology is likely to become yet another source through inhalation, ingestion, skin uptake, and injection of engineered nanomaterials. Information about safety and potential hazards is urgently needed. Results of older bio-kinetic studies with NSPs and newer epidemiologic and toxicologic studies with airborne ultrafine particles can be viewed as the basis for the expanding field of nanotoxicology, which can be defined as safety evaluation of engineered nanostructures and nanodevices. Collectively, some emerging concepts of nanotoxicology can be identified from the results of these studies. When inhaled, specific sizes of NSPs are efficiently deposited by diffusional mechanisms in all regions of the respiratory tract. The small size facilitates uptake into cells and transcytosis across epithelial and endothelial cells into the blood and lymph circulation to reach potentially sensitive target sites such as bone marrow, lymph nodes, spleen, and heart. Access to the central nervous system and ganglia via translocation along axons and dendrites of neurons has also been observed. NSPs penetrating the skin distribute via uptake into lymphatic channels. Endocytosis and biokinetics are largely dependent on NSP surface chemistry (coating) and in vivo surface modifications. The greater surface area per mass compared with larger-sized particles of the same chemistry renders NSPs more active biologically. This activity includes a potential for inflammatory and pro-oxidant, but also antioxidant, activity, which can explain early findings showing mixed results in terms of toxicity of NSPs to environmentally relevant species. Evidence of mitochondrial distribution and oxidative stress response after NSP endocytosis points to a need for basic research on their interactions with subcellular structures. Additional considerations for assessing safety of engineered NSPs include careful selections of appropriate and relevant doses/concentrations, the likelihood of increased effects in a compromised organism, and also the benefits of possible desirable effects. An interdisciplinary team approach (e.g., toxicology, materials science, medicine, molecular biology, and bioinformatics, to name a few) is mandatory for nanotoxicology research to arrive at an appropriate risk assessment.

7,092 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Abstract: Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

4,591 citations

Book ChapterDOI
01 Jan 2014
TL;DR: Myhre et al. as discussed by the authors presented the contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) 2013: Anthropogenic and Natural Radiative forcing.
Abstract: This chapter should be cited as: Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura and H. Zhang, 2013: Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Coordinating Lead Authors: Gunnar Myhre (Norway), Drew Shindell (USA)

3,684 citations

Journal ArticleDOI
TL;DR: In this article, an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and analytical techniques used to determine the chemical composition of SOA is presented.
Abstract: Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed.

3,324 citations