scispace - formally typeset
Search or ask a question
Author

Tuukka Petäjä

Bio: Tuukka Petäjä is an academic researcher from University of Helsinki. The author has contributed to research in topics: Aerosol & Particle. The author has an hindex of 82, co-authored 526 publications receiving 30572 citations. Previous affiliations of Tuukka Petäjä include Helsinki Institute of Physics & National Center for Atmospheric Research.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article , an eleven-month time series of the ambient concentration of organic carbon (OC) and elemental carbon (EC) between May 2018-March 2019 in Amman, Jordan was collected.
Abstract: The Mediterranean region is an important area for air pollution as it is the crossroads between three continents; therefore, the concentrations of atmospheric aerosol particles are influenced by emissions from Africa, Asia, and Europe. Here we concentrate on an eleven-month time series of the ambient concentration of organic carbon (OC) and elemental carbon (EC) between May 2018–March 2019 in Amman, Jordan. Such a dataset is unique in Jordan. The results show that the OC and EC annual mean concentrations in PM2.5 samples were 5.9 ± 2.8 µg m–3 and 1.7 ± 1.1 µg m–3, respectively. It was found that the majority of OC and EC concentrations were within the fine particle fraction (PM2.5). During sand and dust storm (SDS) episodes OC and EC concentrations were higher than the annual means; the mean values during these periods were about 9.6 ± 3.5 µg m–3 and 2.5 ± 1.2 µg m–3 in the PM2.5 samples. Based on this, the SDS episodes were identified to be responsible for an increased carbonaceous aerosol content as well as PM2.5 and PM10 content, which may have direct implications on human health. This study encourages us to perform more extensive measurements during a longer time period and to include an advanced chemical and physical characterization for urban aerosols in the urban atmosphere of Amman, which can be representative of other urban areas in the region.

4 citations

Posted ContentDOI
TL;DR: In this article, the authors measured amine and guanidine emission rates from a boreal forest floor in Finland with 1-h time resolution, using an online ion chromatograph coupled with an electrospray ionization-quadrupole mass spectrometer (MS).
Abstract: . We measured amine and guanidine emission rates from a boreal forest floor in Finland with 1-h time resolution, using an online ion chromatograph (instrument for Measuring AeRosols and Gases in Ambient air – MARGA) coupled with an electrospray ionization-quadrupole mass spectrometer (MS). MARGA-MS was connected to a closed dynamic flow-through poly(methyl methacrylate) chamber. Chamber recovery for the emission measurements was tested semi-quantitatively for monomethyl-, dimethyl- and trimethylamine (MMA, DMA and TMA), and the results were 19 %, 29 % and 24 %, respectively. MMA, DMA and TMA showed maximum emission rates in July, but the highest emission rates for guanidine were in April, when snow was melting. The MMA, DMA and TMA emission rates also clearly varied diurnally, especially in July with maxima at afternoon. Diethylamine (DEA) also showed higher emission rates, with clear diurnal cycles in July. Other amine emission rates were mostly below the detection limits. The temperature dependencies of the emissions were studied, and we noted a correlation between the emission rates and chamber temperature (Tchamber). Especially in July emission rates of DMA followed Tchamber measured two hours earlier and guanidine showed a similar pattern. On the other hand, the TMA emission rates correlated with Tchamber measured at the same time. This could be due to lower vaporizing temperature of TMA. Emission rates of DMA and TMA showed some air temperature (Tair) dependency, but for MMA dependency was not as clear.

4 citations

Journal ArticleDOI
TL;DR: In this article, more accurate information on the levels of aerosol optical depth (AOD) was calculated from the assimilation of the modeled AOD based on the optimal interpolation method.
Abstract: In this study, more accurate information on the levels of aerosol optical depth (AOD) was calculated from the assimilation of the modeled AOD based on the optimal interpolation method. Additionally, more realistic levels of surface particulate matters over the Arctic were estimated using the assimilated AOD based on the linear relationship between the particulate matters and AODs. In comparison to the MODIS observation, the assimilated AOD was much improved compared with the modeled AOD (e.g., increase in correlation coefficients from −0.15–0.26 to 0.17–0.76 over the Arctic). The newly inferred monthly averages of PM10 and PM2.5 for April–September 2008 were 2.18–3.70 μg m−3 and 0.85–1.68 μg m−3 over the Arctic, respectively. These corresponded to an increase of 140–180%, compared with the modeled PMs. In comparison to in-situ observation, the inferred PMs showed better performances than those from the simulations, particularly at Hyytiala station. Therefore, combining the model simulation and data assimilation provided more accurate concentrations of AOD, PM10, and PM2.5 than those only calculated from the model simulations.

4 citations

Journal ArticleDOI
TL;DR: In this article , a machine learning approach is proposed to develop a BC proxy using air pollution datasets as an input, based on two machine learning models, support vector regression (SVR) and random forest (RF), using observations of particle mass and number concentrations (N), gaseous pollutants and meteorological variables as the input.
Abstract: Black carbon (BC) is a product of incomplete combustion, present in urban aerosols and sourcing mainly from road traffic. Epidemiological evidence reports positive associations between BC and cardiovascular and respiratory disease. Despite this, BC is currently not regulated by the EU Air Quality Directive, and as a result BC data are not available in urban areas from reference air quality monitoring networks in many countries. To fill this gap, a machine learning approach is proposed to develop a BC proxy using air pollution datasets as an input. The proposed BC proxy is based on two machine learning models, support vector regression (SVR) and random forest (RF), using observations of particle mass and number concentrations (N), gaseous pollutants and meteorological variables as the input. Experimental data were collected from a reference station in Barcelona (Spain) over a 2-year period (2018–2019). Two months of additional data were available from a second urban site in Barcelona, for model validation. BC concentrations estimated by SVR showed a high degree of correlation with the measured BC concentrations (R2 = 0.828) with a relatively low error (RMSE = 0.48 μg/m3). Model performance was dependent on seasonality and time of the day, due to the influence of new particle formation events. When validated at the second station, performance indicators decreased (R2 = 0.633; RMSE = 1.19 μg/m3) due to the lack of N data and PM2.5 and the smaller size of the dataset (2 months). New particle formation events critically impacted model performance, suggesting that its application would be optimal in environments where traffic is the main source of ultrafine particles. Due to its flexibility, it is concluded that the model can act as a BC proxy, even based on EU-regulatory air quality parameters only, to complement experimental measurements for exposure assessment in urban areas.

4 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Results of older bio-kinetic studies with NSPs and newer epidemiologic and toxicologic studies with airborne ultrafine particles can be viewed as the basis for the expanding field of nanotoxicology, which can be defined as safety evaluation of engineered nanostructures and nanodevices.
Abstract: Although humans have been exposed to airborne nanosized particles (NSPs; < 100 nm) throughout their evolutionary stages, such exposure has increased dramatically over the last century due to anthropogenic sources. The rapidly developing field of nanotechnology is likely to become yet another source through inhalation, ingestion, skin uptake, and injection of engineered nanomaterials. Information about safety and potential hazards is urgently needed. Results of older bio-kinetic studies with NSPs and newer epidemiologic and toxicologic studies with airborne ultrafine particles can be viewed as the basis for the expanding field of nanotoxicology, which can be defined as safety evaluation of engineered nanostructures and nanodevices. Collectively, some emerging concepts of nanotoxicology can be identified from the results of these studies. When inhaled, specific sizes of NSPs are efficiently deposited by diffusional mechanisms in all regions of the respiratory tract. The small size facilitates uptake into cells and transcytosis across epithelial and endothelial cells into the blood and lymph circulation to reach potentially sensitive target sites such as bone marrow, lymph nodes, spleen, and heart. Access to the central nervous system and ganglia via translocation along axons and dendrites of neurons has also been observed. NSPs penetrating the skin distribute via uptake into lymphatic channels. Endocytosis and biokinetics are largely dependent on NSP surface chemistry (coating) and in vivo surface modifications. The greater surface area per mass compared with larger-sized particles of the same chemistry renders NSPs more active biologically. This activity includes a potential for inflammatory and pro-oxidant, but also antioxidant, activity, which can explain early findings showing mixed results in terms of toxicity of NSPs to environmentally relevant species. Evidence of mitochondrial distribution and oxidative stress response after NSP endocytosis points to a need for basic research on their interactions with subcellular structures. Additional considerations for assessing safety of engineered NSPs include careful selections of appropriate and relevant doses/concentrations, the likelihood of increased effects in a compromised organism, and also the benefits of possible desirable effects. An interdisciplinary team approach (e.g., toxicology, materials science, medicine, molecular biology, and bioinformatics, to name a few) is mandatory for nanotoxicology research to arrive at an appropriate risk assessment.

7,092 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Abstract: Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

4,591 citations

Book ChapterDOI
01 Jan 2014
TL;DR: Myhre et al. as discussed by the authors presented the contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) 2013: Anthropogenic and Natural Radiative forcing.
Abstract: This chapter should be cited as: Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura and H. Zhang, 2013: Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Coordinating Lead Authors: Gunnar Myhre (Norway), Drew Shindell (USA)

3,684 citations

Journal ArticleDOI
TL;DR: In this article, an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and analytical techniques used to determine the chemical composition of SOA is presented.
Abstract: Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed.

3,324 citations