scispace - formally typeset
Search or ask a question
Author

Twan Koolen

Bio: Twan Koolen is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Humanoid robot & Robot. The author has an hindex of 15, co-authored 21 publications receiving 2138 citations. Previous affiliations of Twan Koolen include Delft University of Technology & University of Michigan.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper describes a collection of optimization algorithms for achieving dynamic planning, control, and state estimation for a bipedal robot designed to operate reliably in complex environments and presents a state estimator formulation that permits highly precise execution of extended walking plans over non-flat terrain.
Abstract: This paper describes a collection of optimization algorithms for achieving dynamic planning, control, and state estimation for a bipedal robot designed to operate reliably in complex environments. To make challenging locomotion tasks tractable, we describe several novel applications of convex, mixed-integer, and sparse nonlinear optimization to problems ranging from footstep placement to whole-body planning and control. We also present a state estimator formulation that, when combined with our walking controller, permits highly precise execution of extended walking plans over non-flat terrain. We describe our complete system integration and experiments carried out on Atlas, a full-size hydraulic humanoid robot built by Boston Dynamics, Inc.

715 citations

Journal ArticleDOI
TL;DR: This two-part paper discusses the analysis and control of legged locomotion in terms of N-step capturability: the ability of a legged system to come to a stop without falling by taking N or fewer steps, and introduces a theoretical framework for assessing N- stepCapturability.
Abstract: This two-part paper discusses the analysis and control of legged locomotion in terms of N-step capturability: the ability of a legged system to come to a stop without falling by taking N or fewer steps. We consider this ability to be crucial to legged locomotion and a useful, yet not overly restrictive criterion for stability. In this part (Part 1), we introduce a theoretical framework for assessing N-step capturability. This framework is used to analyze three simple models of legged locomotion. All three models are based on the 3D Linear Inverted Pendulum Model. The first model relies solely on a point foot step location to maintain balance, the second model adds a finite-sized foot, and the third model enables the use of centroidal angular momentum by adding a reaction mass. We analyze how these mechanisms influence N-step capturability, for any N > 0. Part 2 will show that these results can be used to control a humanoid robot.

428 citations

Journal ArticleDOI
TL;DR: An algorithm that uses the ability of a legged system to come to a stop without falling by taking N or fewer steps and novel instantaneous capture point control strategies as approximations to control a humanoid robot is described.
Abstract: This two-part paper discusses the analysis and control of legged locomotion in terms of N-step capturability: the ability of a legged system to come to a stop without falling by taking N or fewer steps. We consider this ability to be crucial to legged locomotion and a useful, yet not overly restrictive criterion for stability. Part 1 introduced the N-step capturability framework and showed how to obtain capture regions and control sequences for simplified gait models. In Part 2, we describe an algorithm that uses these results as approximations to control a humanoid robot. The main contributions of this part are (1) step location adjustment using the 1-step capture region, (2) novel instantaneous capture point control strategies, and 3) an experimental evaluation of the 1-step capturability margin. The presented algorithm was tested using M2V2, a 3D force-controlled bipedal robot with 12 actuated degrees of freedom in the legs, both in simulation and in physical experiments. The physical robot was able to recover from forward and sideways pushes of up to 21 Ns while balancing on one leg and stepping to regain balance. The simulated robot was able to recover from sideways pushes of up to 15 Ns while walking, and walked across randomly placed stepping stones.

289 citations

Journal ArticleDOI
TL;DR: The challenges the IHMC team faced in transitioning from simulation to hardware and the lessons learned both during the DRC Trials and in the months of preparation leading up to it are discussed.
Abstract: This article is a summary of the experiences of the Florida Institute for Human & Machine Cognition IHMC team during the DARPA Robotics Challenge DRC Trials. The primary goal of the DRC is to develop robots capable of assisting humans in responding to natural and manmade disasters. The robots are expected to use standard tools and equipment to accomplish the mission. The DRC Trials consisted of eight different challenges that tested robot mobility, manipulation, and control under degraded communications and time constraints. Team IHMC competed using the Atlas humanoid robot made by Boston Dynamics. We competed against 16 international teams and placed second in the competition. This article discusses the challenges we faced in transitioning from simulation to hardware. It also discusses the lessons learned both during the competition and in the months of preparation leading up to it. The lessons address the value of reliable hardware and solid software practices. They also cover effective approaches to bipedal walking and designing for human-robot teamwork. Lastly, the lessons present a philosophical discussion about choices related to designing robotic systems.

247 citations

Journal ArticleDOI
TL;DR: A momentum-based control framework for floating-base robots and its application to the humanoid robot “Atlas” is presented and results for walking across rough terrain, basic manipulation, and multi-contact balancing on sloped surfaces are presented.
Abstract: This paper presents a momentum-based control framework for floating-base robots and its application to the humanoid robot “Atlas”. At the heart of the control framework lies a quadratic program that reconciles motion tasks expressed as constraints on the joint acceleration vector with the limitations due to unilateral ground contact and force-limited grasping. We elaborate on necessary adaptations required to move from simulation to real hardware and present results for walking across rough terrain, basic manipulation, and multi-contact balancing on sloped surfaces (the latter in simulation only). The presented control framework was used to secure second place in both the DARPA Robotics Challenge Trials in December 2013 and the Finals in June 2015.

235 citations


Cited by
More filters
01 Nov 2008

2,686 citations

Book
01 Nov 2002
TL;DR: Drive development with automated tests, a style of development called “Test-Driven Development” (TDD for short), which aims to dramatically reduce the defect density of code and make the subject of work crystal clear to all involved.
Abstract: From the Book: “Clean code that works” is Ron Jeffries’ pithy phrase. The goal is clean code that works, and for a whole bunch of reasons: Clean code that works is a predictable way to develop. You know when you are finished, without having to worry about a long bug trail.Clean code that works gives you a chance to learn all the lessons that the code has to teach you. If you only ever slap together the first thing you think of, you never have time to think of a second, better, thing. Clean code that works improves the lives of users of our software.Clean code that works lets your teammates count on you, and you on them.Writing clean code that works feels good.But how do you get to clean code that works? Many forces drive you away from clean code, and even code that works. Without taking too much counsel of our fears, here’s what we do—drive development with automated tests, a style of development called “Test-Driven Development” (TDD for short). In Test-Driven Development, you: Write new code only if you first have a failing automated test.Eliminate duplication. Two simple rules, but they generate complex individual and group behavior. Some of the technical implications are:You must design organically, with running code providing feedback between decisionsYou must write your own tests, since you can’t wait twenty times a day for someone else to write a testYour development environment must provide rapid response to small changesYour designs must consist of many highly cohesive, loosely coupled components, just to make testing easy The two rules imply an order to the tasks ofprogramming: 1. Red—write a little test that doesn’t work, perhaps doesn’t even compile at first 2. Green—make the test work quickly, committing whatever sins necessary in the process 3. Refactor—eliminate all the duplication created in just getting the test to work Red/green/refactor. The TDD’s mantra. Assuming for the moment that such a style is possible, it might be possible to dramatically reduce the defect density of code and make the subject of work crystal clear to all involved. If so, writing only code demanded by failing tests also has social implications: If the defect density can be reduced enough, QA can shift from reactive to pro-active workIf the number of nasty surprises can be reduced enough, project managers can estimate accurately enough to involve real customers in daily developmentIf the topics of technical conversations can be made clear enough, programmers can work in minute-by-minute collaboration instead of daily or weekly collaborationAgain, if the defect density can be reduced enough, we can have shippable software with new functionality every day, leading to new business relationships with customers So, the concept is simple, but what’s my motivation? Why would a programmer take on the additional work of writing automated tests? Why would a programmer work in tiny little steps when their mind is capable of great soaring swoops of design? Courage. Courage Test-driven development is a way of managing fear during programming. I don’t mean fear in a bad way, pow widdle prwogwammew needs a pacifiew, but fear in the legitimate, this-is-a-hard-problem-and-I-can’t-see-the-end-from-the-beginning sense. If pain is nature’s way of saying “Stop!”, fear is nature’s way of saying “Be careful.” Being careful is good, but fear has a host of other effects: Makes you tentativeMakes you want to communicate lessMakes you shy from feedbackMakes you grumpy None of these effects are helpful when programming, especially when programming something hard. So, how can you face a difficult situation and: Instead of being tentative, begin learning concretely as quickly as possible.Instead of clamming up, communicate more clearly.Instead of avoiding feedback, search out helpful, concrete feedback.(You’ll have to work on grumpiness on your own.) Imagine programming as turning a crank to pull a bucket of water from a well. When the bucket is small, a free-spinning crank is fine. When the bucket is big and full of water, you’re going to get tired before the bucket is all the way up. You need a ratchet mechanism to enable you to rest between bouts of cranking. The heavier the bucket, the closer the teeth need to be on the ratchet. The tests in test-driven development are the teeth of the ratchet. Once you get one test working, you know it is working, now and forever. You are one step closer to having everything working than you were when the test was broken. Now get the next one working, and the next, and the next. By analogy, the tougher the programming problem, the less ground should be covered by each test. Readers of Extreme Programming Explained will notice a difference in tone between XP and TDD. TDD isn’t an absolute like Extreme Programming. XP says, “Here are things you must be able to do to be prepared to evolve further.” TDD is a little fuzzier. TDD is an awareness of the gap between decision and feedback during programming, and techniques to control that gap. “What if I do a paper design for a week, then test-drive the code? Is that TDD?” Sure, it’s TDD. You were aware of the gap between decision and feedback and you controlled the gap deliberately. That said, most people who learn TDD find their programming practice changed for good. “Test Infected” is the phrase Erich Gamma coined to describe this shift. You might find yourself writing more tests earlier, and working in smaller steps than you ever dreamed would be sensible. On the other hand, some programmers learn TDD and go back to their earlier practices, reserving TDD for special occasions when ordinary programming isn’t making progress. There are certainly programming tasks that can’t be driven solely by tests (or at least, not yet). Security software and concurrency, for example, are two topics where TDD is not sufficient to mechanically demonstrate that the goals of the software have been met. Security relies on essentially defect-free code, true, but also on human judgement about the methods used to secure the software. Subtle concurrency problems can’t be reliably duplicated by running the code. Once you are finished reading this book, you should be ready to: Start simplyWrite automated testsRefactor to add design decisions one at a time This book is organized into three sections. An example of writing typical model code using TDD. The example is one I got from Ward Cunningham years ago, and have used many times since, multi-currency arithmetic. In it you will learn to write tests before code and grow a design organically.An example of testing more complicated logic, including reflection and exceptions, by developing a framework for automated testing. This example also serves to introduce you to the xUnit architecture that is at the heart of many programmer-oriented testing tools. In the second example you will learn to work in even smaller steps than in the first example, including the kind of self-referential hooha beloved of computer scientists.Patterns for TDD. Included are patterns for the deciding what tests to write, how to write tests using xUnit, and a greatest hits selection of the design patterns and refactorings used in the examples. I wrote the examples imagining a pair programming session. If you like looking at the map before wandering around, you may want to go straight to the patterns in Section 3 and use the examples as illustrations. If you prefer just wandering around and then looking at the map to see where you’ve been, try reading the examples through and refering to the patterns when you want more detail about a technique, then using the patterns as a reference. Several reviewers have commented they got the most out of the examples when they started up a programming environment and entered the code and ran the tests as they read. A note about the examples. Both examples, multi-currency calculation and a testing framework, appear simple. There are (and I have seen) complicated, ugly, messy ways of solving the same problems. I could have chosen one of those complicated, ugly, messy solutions to give the book an air of “reality.” However, my goal, and I hope your goal, is to write clean code that works. Before teeing off on the examples as being too simple, spend 15 seconds imagining a programming world in which all code was this clear and direct, where there were no complicated solutions, only apparently complicated problems begging for careful thought. TDD is a practice that can help you lead yourself to exactly that careful thought.

1,864 citations

Journal ArticleDOI
TL;DR: This paper describes a collection of optimization algorithms for achieving dynamic planning, control, and state estimation for a bipedal robot designed to operate reliably in complex environments and presents a state estimator formulation that permits highly precise execution of extended walking plans over non-flat terrain.
Abstract: This paper describes a collection of optimization algorithms for achieving dynamic planning, control, and state estimation for a bipedal robot designed to operate reliably in complex environments. To make challenging locomotion tasks tractable, we describe several novel applications of convex, mixed-integer, and sparse nonlinear optimization to problems ranging from footstep placement to whole-body planning and control. We also present a state estimator formulation that, when combined with our walking controller, permits highly precise execution of extended walking plans over non-flat terrain. We describe our complete system integration and experiments carried out on Atlas, a full-size hydraulic humanoid robot built by Boston Dynamics, Inc.

715 citations

Journal ArticleDOI
TL;DR: The need for better evaluation metrics is explained, the importance and unique challenges for deep robotic learning in simulation are highlighted, and the spectrum between purely data-driven and model-driven approaches is explored.
Abstract: The application of deep learning in robotics leads to very specific problems and research questions that are typically not addressed by the computer vision and machine learning communities. In this paper we discuss a number of robotics-specific learning, reasoning, and embodiment challenges for deep learning. We explain the need for better evaluation metrics, highlight the importance and unique challenges for deep robotic learning in simulation, and explore the spectrum between purely data-driven and model-driven approaches. We hope this paper provides a motivating overview of important research directions to overcome the current limitations, and helps to fulfill the promising potentials of deep learning in robotics.

429 citations

Journal ArticleDOI
TL;DR: This two-part paper discusses the analysis and control of legged locomotion in terms of N-step capturability: the ability of a legged system to come to a stop without falling by taking N or fewer steps, and introduces a theoretical framework for assessing N- stepCapturability.
Abstract: This two-part paper discusses the analysis and control of legged locomotion in terms of N-step capturability: the ability of a legged system to come to a stop without falling by taking N or fewer steps. We consider this ability to be crucial to legged locomotion and a useful, yet not overly restrictive criterion for stability. In this part (Part 1), we introduce a theoretical framework for assessing N-step capturability. This framework is used to analyze three simple models of legged locomotion. All three models are based on the 3D Linear Inverted Pendulum Model. The first model relies solely on a point foot step location to maintain balance, the second model adds a finite-sized foot, and the third model enables the use of centroidal angular momentum by adding a reaction mass. We analyze how these mechanisms influence N-step capturability, for any N > 0. Part 2 will show that these results can be used to control a humanoid robot.

428 citations