scispace - formally typeset
Search or ask a question
Author

U. A. Paulus

Bio: U. A. Paulus is an academic researcher from University of Ulm. The author has contributed to research in topics: Catalysis & Platinum. The author has an hindex of 7, co-authored 7 publications receiving 2905 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a thin-film rotating disk electrode method and its application in a rotating ring disk configuration (RRDE) to the investigation of the oxygen reduction reaction (orr) on a supported catalyst powder (Pt/Vulcan XC 72 carbon).

1,319 citations

Journal ArticleDOI
TL;DR: In this article, a comparative study of the oxygen reduction reaction on two carbon-supported Pt-based alloy catalysts in aqueous acidic electrolyte at low temperature is presented.
Abstract: We describe a comparative study of the oxygen reduction reaction on two carbon-supported Pt-based alloy catalysts in aqueous acidic electrolyte at low temperature. Both alloys have the bulk compositions of 50 and 75 at. % Pt, with the alloying elements being Ni and Co. Comparison is made to a pure Pt catalyst on the same carbon support, Vulcan XC-72, having the same metal loading (20 wt %) and nominally the same particle size (4 ± 2 nm). High-resolution electron microscopy was used to determine the size and shape of the particles as well as the particle size distribution on all catalysts. Electrochemical measurements were performed using the thin-film rotating ring−disk electrode method in 0.1 M HClO4 at 20−60 °C. Hydrogen adsorption pseudocapacitance was used to determine the number of Pt surface atoms and to estimate the surface composition of the alloy catalysts. Kinetic analysis in comparison to pure Pt revealed a small activity enhancement (per Pt surface atom) of ca. 1.5 for the 25 at. % Ni and Co c...

903 citations

Journal ArticleDOI
TL;DR: In this paper, the oxygen reduction reaction on a typical carbon supported Pt fuel cell catalyst in the presence of different anions was studied and it was shown that the reduction reaction activity decreases in the order ClO 4− HSO 4− Cl −, consistent with the increasing adsorption bond strength of the anions.

428 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the preparation and characterization of new PtRu alloy colloids that are suitable as precursors for fuel cell catalysts, which can be easily modified to show hydrophilic properties.

209 citations

Journal ArticleDOI
TL;DR: In this article, the oxygen reduction reaction (ORROC) activity of a Ru 1.92 Mo 0.08 SeO 4 catalyst, a Vulcan XC72-supported Ru catalyst and a VXC72 supported Pt catalyst was studied with a rotating ring-disk electrode.
Abstract: The oxygen reduction reaction (ORR) activity of a Ru 1.92 Mo 0.08 SeO 4 catalyst, a Vulcan XC72-supported Ru catalyst and, for comparison, a Vulcan XC72-supported Pt catalyst was studied with a rotating ring-disk electrode. The very similar reaction characteristics of the two Ru catalysts in pure and CH 3 OH-containing H 2 SO 4 electrolyte, which differ markedly from those of the Pt catalyst, indicate that the reactive centers in both Ru catalysts must be identical. They are highly selective (>95%) toward reduction to H 2 O (four electron pathway), independent of the presence of methanol. In the latter case, they are 100% selective toward the ORR, i.e., completely methanol tolerant, while the ORR on Pt catalysts is accompanied by significant CH 3 OH oxidation. Based on mass specific current densities, however, the Ru catalysts are significantly less active than the standard Pt catalysts. Only at methanol concentrations above 10-30 mM does their methanol tolerance make them more active than Pt/Vulcan. Implications for their use as cathode catalysts in a direct methanol fuel cell are discussed.

199 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the stability of reaction intermediates of electrochemical processes on the basis of electronic structure calculations was analyzed and a detailed description of the free energy landscape of the electrochemical oxygen reduction reaction over Pt(111) as a function of applied bias was presented.
Abstract: We present a method for calculating the stability of reaction intermediates of electrochemical processes on the basis of electronic structure calculations. We used that method in combination with detailed density functional calculations to develop a detailed description of the free-energy landscape of the electrochemical oxygen reduction reaction over Pt(111) as a function of applied bias. This allowed us to identify the origin of the overpotential found for this reaction. Adsorbed oxygen and hydroxyl are found to be very stable intermediates at potentials close to equilibrium, and the calculated rate constant for the activated proton/electron transfer to adsorbed oxygen or hydroxyl can account quantitatively for the observed kinetics. On the basis of a database of calculated oxygen and hydroxyl adsorption energies, the trends in the oxygen reduction rate for a large number of different transition and noble metals can be accounted for. Alternative reaction mechanisms involving proton/electron transfer to ...

7,711 citations

Journal ArticleDOI
TL;DR: The Co₃O₄/N-doped graphene hybrid exhibits similar catalytic activity but superior stability to Pt in alkaline solutions, making it a high-performance non-precious metal-based bi-catalyst for both ORR and OER.
Abstract: Catalysts for oxygen reduction and evolution reactions are at the heart of key renewable-energy technologies including fuel cells and water splitting. Despite tremendous efforts, developing oxygen electrode catalysts with high activity at low cost remains a great challenge. Here, we report a hybrid material consisting of Co₃O₄ nanocrystals grown on reduced graphene oxide as a high-performance bi-functional catalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Although Co₃O₄ or graphene oxide alone has little catalytic activity, their hybrid exhibits an unexpected, surprisingly high ORR activity that is further enhanced by nitrogen doping of graphene. The Co₃O₄/N-doped graphene hybrid exhibits similar catalytic activity but superior stability to Pt in alkaline solutions. The same hybrid is also highly active for OER, making it a high-performance non-precious metal-based bi-catalyst for both ORR and OER. The unusual catalytic activity arises from synergetic chemical coupling effects between Co₃O₄ and graphene.

4,898 citations

Journal ArticleDOI
TL;DR: In this article, the authors quantified the activities and voltage loss modes for state-of-the-art MEAs (membrane electrode assemblies), specifies performance goals needed for automotive application, and provides benchmark oxygen reduction activities for state of the art platinum electrocatalysts.
Abstract: The mass production of proton exchange membrane (PEM) fuel-cell-powered light-duty vehicles requires a reduction in the amount of Pt presently used in fuel cells. This paper quantifies the activities and voltage loss modes for state-of-the-art MEAs (membrane electrode assemblies), specifies performance goals needed for automotive application, and provides benchmark oxygen reduction activities for state-of-the-art platinum electrocatalysts using two different testing procedures to clearly establish the relative merit of candidate catalysts. A pathway to meet the automotive goals is charted, involving the further development of durable, high-activity Pt-alloy catalysts. The history, status in recent experiments, and prospects for Pt-alloy cathode catalysts are reviewed. The performance that would be needed for a cost-free non-Pt catalyst is defined quantitatively, and the behaviors of several published non-Pt catalyst systems (and logical extensions thereof), are compared to these requirements. Critical research topics are listed for the Pt-alloy catalysts, which appear to represent the most likely route to automotive fuel cells.

4,298 citations

Journal ArticleDOI
26 Jan 2007-Science
TL;DR: It is demonstrated that the Pt3Ni( 111) surface is 10-fold more active for the ORR than the corresponding Pt(111) surface and 90-foldMore active than the current state-of-the-art Pt/C catalysts for PEMFC.
Abstract: The slow rate of the oxygen reduction reaction (ORR) in the polymer electrolyte membrane fuel cell (PEMFC) is the main limitation for automotive applications. We demonstrated that the Pt3Ni(111) surface is 10-fold more active for the ORR than the corresponding Pt(111) surface and 90-fold more active than the current state-of-the-art Pt/C catalysts for PEMFC. The Pt3Ni(111) surface has an unusual electronic structure (d-band center position) and arrangement of surface atoms in the near-surface region. Under operating conditions relevant to fuel cells, its near-surface layer exhibits a highly structured compositional oscillation in the outermost and third layers, which are Pt-rich, and in the second atomic layer, which is Ni-rich. The weak interaction between the Pt surface atoms and nonreactive oxygenated species increases the number of active sites for O2 adsorption.

3,804 citations

Journal ArticleDOI
TL;DR: Nanoalloys of Group 11 (Cu, Ag, Au) 865 5.1.5.2.
Abstract: 5.1. Nanoalloys of Group 11 (Cu, Ag, Au) 865 5.1.1. Cu−Ag 866 5.1.2. Cu−Au 867 5.1.3. Ag−Au 870 5.1.4. Cu−Ag−Au 872 5.2. Nanoalloys of Group 10 (Ni, Pd, Pt) 872 5.2.1. Ni−Pd 872 * To whom correspondence should be addressed. Phone: +39010 3536214. Fax:+39010 311066. E-mail: ferrando@fisica.unige.it. † Universita di Genova. ‡ Argonne National Laboratory. § University of Birmingham. | As of October 1, 2007, Chemical Sciences and Engineering Division. Volume 108, Number 3

3,114 citations