scispace - formally typeset
Search or ask a question
Author

U Ghia

Bio: U Ghia is an academic researcher from University of Cincinnati. The author has contributed to research in topics: Venturi effect & Mechanics. The author has an hindex of 1, co-authored 1 publications receiving 3728 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The vorticity-stream function formulation of the two-dimensional incompressible NavierStokes equations is used to study the effectiveness of the coupled strongly implicit multigrid (CSI-MG) method in the determination of high-Re fine-mesh flow solutions.

4,018 citations

Journal ArticleDOI
TL;DR: In this paper , a model for dust aerosolization in a tube, as powder is injected into the Venturi Dustiness Tester, is presented, where the particle is represented as a sphere in a parallel plate channel, or, in two dimensions, a cylinder oriented perpendicular to the flow.
Abstract: Understanding particle detachment from surfaces is necessary to better characterize dust generation and entrainment. Previous work has studied the detachment of particles from flat surfaces. The present work generalizes this to investigate the aerodynamics of a particle attached to various locations on a model hill. The present work serves as a model for dust aerosolization in a tube, as powder is injected into the Venturi Dustiness Tester. The particle is represented as a sphere in a parallel plate channel, or, in two dimensions, a cylinder oriented perpendicular to the flow. The substrate is modified to include a conical hill (3d) or wedge (2d), and the test particle is located at various positions on this hill. The governing incompressible Navier-Stokes equations are solved using the finite-volume FLUENT code. The coefficients of lift and drag are compared with the results on the flat substrate. Enhanced drag and significantly enhanced lift are observed as the test particle is situated near the summit of the hill.

1 citations

Journal ArticleDOI
TL;DR: In this paper , a model for dust aerosolization in a tube, as powder is injected into the Venturi Dustiness Tester, is presented, where the particle is represented as a sphere in a parallel plate channel, or, in two dimensions, as a cylinder oriented perpendicular to the flow.
Abstract: Understanding particle detachment from surfaces is necessary to better characterize dust generation and entrainment. Previous work has studied the detachment of particles from flat surfaces. The present work generalizes this to investigate the aerodynamics of a particle attached to various locations on a model hill. The present work serves as a model for dust aerosolization in a tube, as powder is injected into the Venturi Dustiness Tester. The particle is represented as a sphere in a parallel plate channel, or, in two dimensions, as a cylinder oriented perpendicular to the flow. The substrate is modified to include a conical hill (3D) or wedge (2D), and the test particle is located at various positions on this hill. The governing incompressible Navier-Stokes equations are solved using the finite-volume FLUENT code. The coefficients of lift and drag are compared with the results on the flat substrate. Enhanced drag and significantly enhanced lift are observed as the test particle is situated near the summit of the hill.

1 citations

Journal ArticleDOI
TL;DR: In this paper , the authors compared the performance of the V&V10.1 and V&VM20 standard for the determination of the transverse tip deflection of an elastic, hollow, tapered, cantilever, box beam under a uniform loading applied over half the length of the beam presented in the standard.
Abstract: The determination of the transverse tip deflection of an elastic, hollow, tapered, cantilever, box beam under a uniform loading applied over half the length of the beam presented in the V&V10.1 standard is used to compare the application of the validation procedures presented in the V&V10.1 and V&V20 standards. Both procedures aim to estimate the modeling error of the mathematical/computational model used in the simulations taking into account the variability of the modulus of elasticity of the material used in the beam and the rotational flexibility at the clamped end of the beam. The paper discusses the four steps of the two error quantification procedures: 1- characterization of the problem including all the assumptions and approximations made to obtain the experimental and simulation data; 2-selection of the validation variable; 3- determination of the different quantities required by the validation metrics in the two error quantification procedures; 4- outcome of the two validation procedures and its discussion. The paper also discusses the inclusion of experimental, input and numerical uncertainties (assumed or demonstrated to be negligible in V&V10.1) in the two validation approaches. This simple exercise shows that different choices are made in the two alternative approaches, which lead to different ways of characterizing the modeling error. The topics of accuracy requirements and validation comparisons (model acceptance/rejection) for engineering applications are not addressed in this paper.

1 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, a numerical method for computing three-dimensional, time-dependent incompressible flows is presented based on a fractional-step, or time-splitting, scheme in conjunction with the approximate-factorization technique.

2,997 citations

Journal ArticleDOI
TL;DR: The aim of this paper is to present the reader with a perspective on how JFNK may be applicable to applications of interest and to provide sources of further practical information.

1,803 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the behavior of nanofluids inside a two-sided lid-driven differentially heated square cavity to gain insight into convective recirculation and flow processes induced by a nano-fluid.

1,797 citations

Journal ArticleDOI
TL;DR: An extensive review of the literature in V&V in computational fluid dynamics (CFD) is presented, methods and procedures for assessing V &V are discussed, and a relatively new procedure for estimating experimental uncertainty is given that has proven more effective at estimating random and correlated bias errors in wind-tunnel experiments than traditional methods.

948 citations

Journal ArticleDOI
TL;DR: In this paper, the lattice Boltzmann equation (LBE) is applied to high Reynolds number incompressible flows, some critical issues need to be addressed, noticeably flexible spatial resolution, boundary treatments for curved solid wall, dispersion and mode of relaxation, and turbulence model.

861 citations