scispace - formally typeset
Search or ask a question
Author

U-In Chung

Bio: U-In Chung is an academic researcher from Samsung. The author has contributed to research in topics: Transistor & Thin-film transistor. The author has an hindex of 45, co-authored 221 publications receiving 10510 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work demonstrates a TaO(x)-based asymmetric passive switching device with which it was able to localize resistance switching and satisfy all aforementioned requirements, and eliminates any need for a discrete transistor or diode in solving issues of stray leakage current paths in high-density crossbar arrays.
Abstract: Numerous candidates attempting to replace Si-based flash memory have failed for a variety of reasons over the years. Oxide-based resistance memory and the related memristor have succeeded in surpassing the specifications for a number of device requirements. However, a material or device structure that satisfies high-density, switching-speed, endurance, retention and most importantly power-consumption criteria has yet to be announced. In this work we demonstrate a TaO(x)-based asymmetric passive switching device with which we were able to localize resistance switching and satisfy all aforementioned requirements. In particular, the reduction of switching current drastically reduces power consumption and results in extreme cycling endurances of over 10(12). Along with the 10 ns switching times, this allows for possible applications to the working-memory space as well. Furthermore, by combining two such devices each with an intrinsic Schottky barrier we eliminate any need for a discrete transistor or diode in solving issues of stray leakage current paths in high-density crossbar arrays.

1,900 citations

Journal ArticleDOI
TL;DR: A stretchable resistive pressure sensor is achieved by coating a compressible substrate with a highly stretchable electrode that contains an array of microscale pyramidal features and the electrode comprises a polymer composite.
Abstract: A stretchable resistive pressure sensor is achieved by coating a compressible substrate with a highly stretchable electrode. The substrate contains an array of microscale pyramidal features, and the electrode comprises a polymer composite. When the pressure-induced geometrical change experienced by the electrode is maximized at 40% elongation, a sensitivity of 10.3 kPa(-1) is achieved.

1,008 citations

Proceedings Article
01 Jun 2006
TL;DR: Damascened metal gate SONOS type cell in the vertical NAND flash string is realized by a unique dasiagate replacementpsila process and conventional bulk erase operation of the cell is successfully demonstrated.
Abstract: Vertical NAND flash memory cell array by TCAT (terabit cell array transistor) technology is proposed. Damascened metal gate SONOS type cell in the vertical NAND flash string is realized by a unique dasiagate replacementpsila process. Also, conventional bulk erase operation of the cell is successfully demonstrated. All advantages of TCAT flash is achieved without any sacrifice of bit cost scalability.

747 citations

Journal ArticleDOI
TL;DR: In this paper, the bistable resistive memory switching in submicron sized NiO memory cells was investigated using a current-bias method, and anomalous resistance fluctuations between resistance states were observed during the resistive transition from high resistance state to low resistance state.
Abstract: Experimental results on the bistable resistive memory switching in submicron sized NiO memory cells are presented. By using a current-bias method, intermediate resistance states and anomalous resistance fluctuations between resistance states are observed during the resistive transition from high resistance state to low resistance state. They are interpreted to be associated with filamentary conducting paths with their formation and rupture for the memory switching origin in NiO. The experimental results are discussed on the basis of filamentary conductions in consideration of local Joule heating effect.

538 citations

Journal ArticleDOI
TL;DR: A gated amorphous oxide semiconductor photo thin-film transistor (photo-TFT) that can provide direct control over the position of the Fermi level in the active layer and is integrated in a transparent active-matrix photosensor array that has potential applications in contact-free interactive displays.
Abstract: The composition of amorphous oxide semiconductors, which are well known for their optical transparency, can be tailored to enhance their absorption and induce photoconductivity for irradiation with green, and shorter wavelength light. In principle, amorphous oxide semiconductor-based thin-film photoconductors could hence be applied as photosensors. However, their photoconductivity persists for hours after illumination has been removed, which severely degrades the response time and the frame rate of oxide-based sensor arrays. We have solved the problem of persistent photoconductivity (PPC) by developing a gated amorphous oxide semiconductor photo thin-film transistor (photo-TFT) that can provide direct control over the position of the Fermi level in the active layer. Applying a short-duration (10 ns) voltage pulse to these devices induces electron accumulation and accelerates their recombination with ionized oxygen vacancy sites, which are thought to cause PPC. We have integrated these photo-TFTs in a transparent active-matrix photosensor array that can be operated at high frame rates and that has potential applications in contact-free interactive displays.

402 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A coarse-grained classification into primarily thermal, electrical or ion-migration-induced switching mechanisms into metal-insulator-metal systems, and a brief look into molecular switching systems is taken.
Abstract: Many metal–insulator–metal systems show electrically induced resistive switching effects and have therefore been proposed as the basis for future non-volatile memories. They combine the advantages of Flash and DRAM (dynamic random access memories) while avoiding their drawbacks, and they might be highly scalable. Here we propose a coarse-grained classification into primarily thermal, electrical or ion-migration-induced switching mechanisms. The ion-migration effects are coupled to redox processes which cause the change in resistance. They are subdivided into cation-migration cells, based on the electrochemical growth and dissolution of metallic filaments, and anion-migration cells, typically realized with transition metal oxides as the insulator, in which electronically conducting paths of sub-oxides are formed and removed by local redox processes. From this insight, we take a brief look into molecular switching systems. Finally, we discuss chip architecture and scaling issues.

4,547 citations

Journal ArticleDOI
TL;DR: Ultraensitive monolayer MoS2 phototransistors with improved device mobility and ON current are demonstrated, showing important potential for applications in MoS 2-based integrated optoelectronic circuits, light sensing, biomedical imaging, video recording and spectroscopy.
Abstract: A very sensitive photodector based on molybdenum disulphide with potential for integrated optoelectronic circuits, light sensing, biomedical imaging, video recording or spectroscopy is now demonstrated.

4,212 citations

Journal ArticleDOI
TL;DR: The performance requirements for computing with memristive devices are examined and how the outstanding challenges could be met are examined.
Abstract: Memristive devices are electrical resistance switches that can retain a state of internal resistance based on the history of applied voltage and current. These devices can store and process information, and offer several key performance characteristics that exceed conventional integrated circuit technology. An important class of memristive devices are two-terminal resistance switches based on ionic motion, which are built from a simple conductor/insulator/conductor thin-film stack. These devices were originally conceived in the late 1960s and recent progress has led to fast, low-energy, high-endurance devices that can be scaled down to less than 10 nm and stacked in three dimensions. However, the underlying device mechanisms remain unclear, which is a significant barrier to their widespread application. Here, we review recent progress in the development and understanding of memristive devices. We also examine the performance requirements for computing with memristive devices and detail how the outstanding challenges could be met.

3,037 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the current status of one of the alternatives, resistance random access memory (ReRAM), which uses a resistive switching phenomenon found in transition metal oxides.

2,641 citations