scispace - formally typeset
Search or ask a question
Author

U. Muscha Steckelings

Other affiliations: Heidelberg University, Charité
Bio: U. Muscha Steckelings is an academic researcher from University of Southern Denmark. The author has contributed to research in topics: Angiotensin II & Angiotensin II receptor type 1. The author has an hindex of 23, co-authored 39 publications receiving 1843 citations. Previous affiliations of U. Muscha Steckelings include Heidelberg University & Charité.

Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of direct angiotensin II type 2 (AT2) receptor stimulation on post-infarct cardiac function with the use of the novel nonpeptide AT2 receptor agonist compound 21 (C21).
Abstract: Background—This study is the first to examine the effect of direct angiotensin II type 2 (AT2) receptor stimulation on postinfarct cardiac function with the use of the novel nonpeptide AT2 receptor agonist compound 21 (C21). Methods and Results—Myocardial infarction (MI) was induced in Wistar rats by permanent ligation of the left coronary artery. Treatment with C21 (0.01, 0.03, 0.3 mg/kg per day IP) was started 24 hours after MI and was continued until euthanasia (7 days after MI). Infarct size was assessed by magnetic resonance imaging, and hemodynamic measurements were performed via transthoracic Doppler echocardiography and intracardiac Millar catheter. Cardiac tissues were analyzed for inflammation and apoptosis markers with immunoblotting and real-time reverse transcription polymerase chain reaction. C21 significantly improved systolic and diastolic ventricular function. Scar size was smallest in the C21-treated rats. In regard to underlying mechanisms, C21 diminished MI-induced Fas-ligand and caspa...

248 citations

Journal ArticleDOI
TL;DR: The anti-inflammatory effects of direct At2 receptor stimulation in vitro and in vivo by the orally active, nonpeptide AT2 receptor agonist C21 are shown, which suggest that pharmacological AT2 receptors stimulation may be an orally applicable future therapeutic approach in pathological settings requiring the reduction of interleukin 6 or inhibition of nuclear factor B.
Abstract: Angiotensin II type 2 (AT2) receptors can be regarded as an endogenous repair system, because the AT2 receptor is upregulated in tissue damage and mediates tissue protection. A potential therapeuti...

200 citations

Journal ArticleDOI
TL;DR: The findings suggest that the complete renin–angiotensin system is present in human skin and plays a role in normal cutaneous homeostasis as well as in human cutaneous wound healing.
Abstract: The present study examined the expression of angiotensin receptors in human skin, the potential synthesis of angiotensin II (Ang II) in this location and looked for a first insight into physiological functions. AT1 and AT2 receptors were found within the epidermis and in dermal vessel walls. The same expression pattern was found for angiotensinogen, renin and angiotensin-converting enzyme (ACE). All components could additionally be demonstrated at mRNA level in cultured primary keratinocytes, melanocytes, dermal fibroblasts and dermal microvascular endothelial cells, except for AT2 receptors in melanocytes. The ability of cutaneous cells to synthesize Ang II was proved by identifying the molecule in cultured keratinocytes. Furthermore, in artificially wounded keratinocyte monolayers, ACE-mRNA expression was rapidly increased, and enhanced ACE expression was still found in cutaneous human scars 3 months after wounding. These findings suggest that the complete renin-angiotensin system is present in human skin and plays a role in normal cutaneous homeostasis as well as in human cutaneous wound healing.

139 citations

Journal ArticleDOI
TL;DR: First data using C21 revealed tissue protective effects and functional improvement after myocardial infarction and in hypertension-induced end organ damage, notably in a blood-pressure independent way.

111 citations

Journal ArticleDOI
TL;DR: The current knowledge and latest hypotheses in this rapidly developing field of angiotensin II receptor subtypes are summarized and the role of the AT2 receptor is still an enigma.

97 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The field of arterial stiffness investigation, which has exploded over the past 20 years, has proliferated without logistical guidance for clinical and research studies, and questions that remain to be addressed in this field are addressed.
Abstract: Much has been published in the past 20 years on the use of measurements of arterial stiffness in animal and human research studies. This summary statement was commissioned by the American Heart Association to address issues concerning the nomenclature, methodologies, utility, limitations, and gaps in knowledge in this rapidly evolving field. The following represents an executive version of the larger online-only Data Supplement and is intended to give the reader a sense of why arterial stiffness is important, how it is measured, the situations in which it has been useful, its limitations, and questions that remain to be addressed in this field. Throughout the document, pulse-wave velocity (PWV; measured in meters per second) and variations such as carotid-femoral PWV (cfPWV; measured in meters per second) are used. PWV without modification is used in the general sense of arterial stiffness. The addition of lowercase modifiers such as “cf” is used when speaking of specific segments of the arterial circulation. The ability to measure arterial stiffness has been present for many years, but the measurement was invasive in the early times. The improvement in technologies to enable repeated, minimal-risk, reproducible measures of this aspect of circulatory physiology led to its incorporation into longitudinal cohort studies spanning a variety of clinical populations, including those at extreme cardiovascular risk (patients on dialysis), those with comorbidities such as diabetes mellitus (DM) and hypertension, healthy elders, and general populations. In the ≈3 decades of clinical use of PWV measures in humans, we have learned much about the importance of this parameter. PWV has proven to have independent predictive utility when evaluated in conjunction with standard risk factors for death and cardiovascular disease (CVD). However, the field of arterial stiffness investigation, which has exploded over the past 20 years, has proliferated without logistical guidance for clinical and …

1,033 citations

Journal ArticleDOI
TL;DR: This review highlights the current knowledge about the roles of ANG-(1–7) in physiology and disease, with particular emphasis on the brain.
Abstract: The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1-7)/MAS, whose end point is the metabolite ANG-(1-7). ACE2 and other enzymes can form ANG-(1-7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1-7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1-7) in physiology and disease, with particular emphasis on the brain.

682 citations

Journal ArticleDOI
TL;DR: It is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Abstract: The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG I...

618 citations

Journal ArticleDOI
TL;DR: Together, a close multidirectional interaction between neuromediators, high-affinity receptors, and regulatory proteases is critically involved to maintain tissue integrity and regulate inflammatory responses in the skin.
Abstract: This review focuses on the role of the peripheral nervous system in cutaneous biology and disease. During the last few years, a modern concept of an interactive network between cutaneous nerves, the neuroendocrine axis, and the immune system has been established. We learned that neurocutaneous interactions influence a variety of physiological and pathophysiological functions, including cell growth, immunity, inflammation, pruritus, and wound healing. This interaction is mediated by primary afferent as well as autonomic nerves, which release neuromediators and activate specific receptors on many target cells in the skin. A dense network of sensory nerves releases neuropeptides, thereby modulating inflammation, cell growth, and the immune responses in the skin. Neurotrophic factors, in addition to regulating nerve growth, participate in many properties of skin function. The skin expresses a variety of neurohormone receptors coupled to heterotrimeric G proteins that are tightly involved in skin homeostasis and inflammation. This neurohormone-receptor interaction is modulated by endopeptidases, which are able to terminate neuropeptide-induced inflammatory or immune responses. Neuronal proteinase-activated receptors or transient receptor potential ion channels are recently described receptors that may have been important in regulating neurogenic inflammation, pain, and pruritus. Together, a close multidirectional interaction between neuromediators, high-affinity receptors, and regulatory proteases is critically involved to maintain tissue integrity and regulate inflammatory responses in the skin. A deeper understanding of cutaneous neuroimmunoendocrinology may help to develop new strategies for the treatment of several skin diseases.

534 citations

Journal ArticleDOI
TL;DR: Animal studies support the existence of protective aminopeptidase A-Ang III-Ang II type 2 receptor and ACE2-Ang-(1 to 7)-Mas receptor arms, paving the way for multiple new treatment options for resistant hypertension.
Abstract: Blockers of the renin-angiotensin-aldosterone system (RAAS), that is, renin inhibitors, angiotensin (Ang)-converting enzyme (ACE) inhibitors, Ang II type 1 receptor antagonists, and mineralocorticoid receptor antagonists, are a cornerstone in the treatment of hypertension. How exactly they exert their effect, in particular in patients with low circulating RAAS activity, also taking into consideration the so-called Ang II/aldosterone escape that often occurs after initial blockade, is still incompletely understood. Multiple studies have tried to find parameters that predict the response to RAAS blockade, allowing a personalized treatment approach. Consequently, the question should now be answered on what basis (eg, sex, ethnicity, age, salt intake, baseline renin, ACE or aldosterone, and genetic variance) a RAAS blocker can be chosen to treat an individual patient. Are all blockers equal? Does optimal blockade imply maximum RAAS blockade, for example, by combining ≥2 RAAS blockers or by simply increasing the dose of 1 blocker? Exciting recent investigations reveal a range of unanticipated extrarenal effects of aldosterone, as well as a detailed insight in the genetic causes of primary aldosteronism, and mineralocorticoid receptor blockers have now become an important treatment option for resistant hypertension. Finally, apart from the deleterious ACE-Ang II-Ang II type 1 receptor arm, animal studies support the existence of protective aminopeptidase A-Ang III-Ang II type 2 receptor and ACE2-Ang-(1 to 7)-Mas receptor arms, paving the way for multiple new treatment options. This review provides an update about all these aspects, critically discussing the many controversies and allowing the reader to obtain a full understanding of what we currently know about RAAS alterations in hypertension.

483 citations