scispace - formally typeset
Search or ask a question
Author

U. Neff

Bio: U. Neff is an academic researcher. The author has contributed to research in topics: Stalagmite & Monsoon. The author has an hindex of 9, co-authored 12 publications receiving 3726 citations.

Papers
More filters
Journal ArticleDOI
13 Jun 2003-Science
TL;DR: A high-resolution oxygen-isotope record from a thorium-uranium–dated stalagmite from southern Oman reflects variations in the amount of monsoon precipitation, indicating that early Holocene monsoon intensity is largely controlled by glacial boundary conditions.
Abstract: A high-resolution oxygen-isotope record from a thorium-uranium-dated stalagmite from southern Oman reflects variations in the amount of monsoon precipitation for the periods from 10.3 to 2.7 and 1.4 to 0.4 thousand years before the present (ky B.P.). Between 10.3 and 8 ky B.P., decadal to centennial variations in monsoon precipitation are in phase with temperature fluctuations recorded in Greenland ice cores, indicating that early Holocene monsoon intensity is largely controlled by glacial boundary conditions. After approximately 8 ky B.P., monsoon precipitation decreases gradually in response to changing Northern Hemisphere summer solar insolation, with decadal to multidecadal variations in monsoon precipitation being linked to solar activity.

1,470 citations

Journal ArticleDOI
TL;DR: In this article, high-resolution oxygen isotope (δ18O) profiles of Holocene stalagmites from four caves in Northern and Southern Oman and Yemen (Socotra) provide detailed information on fluctuations in precipitation along a latitudinal transect from 12°N to 23°N.

885 citations

Journal ArticleDOI
17 May 2001-Nature
TL;DR: A high-resolution record of oxygen isotope variations, for the period from 9.6 to 6.1 kyr before present, in a Th–U-dated stalagmite from Oman suggests that one of the primary controls on centennial- to decadal-scale changes in tropical rainfall and monsoon intensity during this time are variations in solar radiation.
Abstract: Variations in the amount of solar radiation reaching the Earth are thought to influence climate, but the extent of this influence on timescales of millennia to decades is unclear. A number of climate records show correlations between solar cycles and climate1, but the absolute changes in solar intensity over the range of decades to millennia are small2 and the influence of solar flux on climate is not well established. The formation of stalagmites in northern Oman has recorded past northward shifts of the intertropical convergence zone3, whose northward migration stops near the southern shoreline of Arabia in the present climate4. Here we present a high-resolution record of oxygen isotope variations, for the period from 9.6 to 6.1 kyr before present, in a Th–U-dated stalagmite from Oman. The δ18O record from the stalagmite, which serves as a proxy for variations in the tropical circulation and monsoon rainfall, allows us to make a direct comparison of the δ18O record with the Δ14C record from tree rings5, which largely reflects changes in solar activity6,7. The excellent correlation between the two records suggests that one of the primary controls on centennial- to decadal-scale changes in tropical rainfall and monsoon intensity during this time are variations in solar radiation.

726 citations

Journal ArticleDOI
TL;DR: In this paper, a record of continental pluvial periods over the last 330,000 yr was provided by speleothems from Hoti Cave in northern Oman, where the authors measured the δD values of water extracted from speleothem fluid inclusions (δDFI) and calculated δ18O values of calcite calcite.

249 citations

Journal ArticleDOI
TL;DR: In this article, stable isotope profiles of three contemporaneously deposited stalagmites from a shallow cave in Southern Oman provide an annually resolved record of Indian Ocean monsoon rainfall variability for the past 780 years.

238 citations


Cited by
More filters
Journal ArticleDOI
07 Dec 2001-Science
TL;DR: A solar forcing mechanism therefore may underlie at least the Holocene segment of the North Atlantic's “1500-year” cycle, potentially providing an additional mechanism for amplifying the solar signals and transmitting them globally.
Abstract: Surface winds and surface ocean hydrography in the subpolar North Atlantic appear to have been influenced by variations in solar output through the entire Holocene. The evidence comes from a close correlation between inferred changes in production rates of the cosmogenic nuclides carbon-14 and beryllium-10 and centennial to millennial time scale changes in proxies of drift ice measured in deep-sea sediment cores. A solar forcing mechanism therefore may underlie at least the Holocene segment of the North Atlantic's "1500-year" cycle. The surface hydrographic changes may have affected production of North Atlantic Deep Water, potentially providing an additional mechanism for amplifying the solar signals and transmitting them globally.

2,938 citations

Journal ArticleDOI
06 May 2005-Science
TL;DR: A 5-year-resolution absolute-dated oxygen isotope record from Dongge Cave, southern China, provides a continuous history of the Asian monsoon over the past 9000 years, and shows that some, but not all, of the monsoon variability at these frequencies results from changes in solar output.
Abstract: A 5-year-resolution absolute-dated oxygen isotope record from Dongge Cave, southern China, provides a continuous history of the Asian monsoon over the past 9000 years. Although the record broadly follows summer insolation, it is punctuated by eight weak monsoon events lasting approximately 1 to 5 centuries. One correlates with the "8200-year" event, another with the collapse of the Chinese Neolithic culture, and most with North Atlantic ice-rafting events. Cross-correlation of the decadal- to centennial-scale monsoon record with the atmospheric carbon-14 record shows that some, but not all, of the monsoon variability at these frequencies results from changes in solar output.

2,139 citations

Book
23 Apr 2007
TL;DR: In this article, the authors discuss the relationship between Karst and general geomorphology and Hydrogeology and discuss the development of Karst underground systems, and present a detailed analysis of these systems.
Abstract: CHAPTER 1. INTRODUCTION TO KARST. 1.1 Definitions. 1.2 The Relationship Between Karst And General Geomorphology And Hydrogeology. 1.3 The Global Distribution Of Karst. 1.4 The Growth Of Ideas. 1.5 Aims Of The Book. 1.6 Karst Terminology. CHAPTER 2. THE KARST ROCKS. 2.1 Carbonate Rocks And Minerals. 2.2 Limestone Compositions And Depositional Facies. 2.3 Limestone Diagenesis And The Formation Of Dolomite. 2.4 The Evaporite Rocks. 2.5. Quartzites And Siliceous Sandstones. 2.6 Effects Of Lithologic Properties Upon Karst Development. 2.7 Interbedded Clastic Rocks. 2.8 Bedding Planes, Joints, Faults And Fracture Traces. 2.9 Fold Topography. 2.10 Paleokarst Unconformities. CHAPTER 3. DISSOLUTION: CHEMICAL AND KINETIC BEHAVIOUR OF THE KARST ROCKS. 3.1 Introduction. 3.2 Aqueous Solutions And Chemical Equilibria. 3.3 The Dissolution Of Anhydrite, Gypsum And Salt. 3.4 The Dissolution Of Silica. 3.5 Bicarbonate Equilibria And The Dissolution Of Carbonate Rocks In Normal Meteoric Waters. 3.6 The S-O-H System And The Dissolution Of Carbonate Rocks. 3.7 Chemical Complications In Carbonate Dissolution. 3.8 Biokarst Processes. 3.9 Measurements In The Field And Lab Computer Programs. 3.10 Dissolution And Precipitation Kinetics Of Karst Rocks. CHAPTER 4. DISTRIBUTION AND RATE OF KARST DENUDATION. 4.1 Global Variations In The Solutional Denudation Of Carbonate Terrains. 4.2 Measurement And Calculation Of Solutional Denudation Rates. 4.3 Solution Rates In Gypsum, Salt And Other Non-Carbonate Rocks. 4.4 Interpretation Of Measurements. CHAPTER 5. KARST HYDROLOGY. 5.1 Basic Hydrological Concepts, Terms And Definitions. 5.2 Controls On The Development Of Karst Hydrologic Systems. 5.3 Energy Supply And Flow Network Development. 5.4 Development Of The Water Table And Phreatic Zones. 5.5 Development Of The Vadose Zone. 5.6 Classification And Characteristics Of Karst Aquifers. 5.7 Applicability Of Darcy's Law To Karst. 5.8 The Fresh Water/Salt Water Interface. CHAPTER 6. ANALYSIS OF KARST DRAINAGE SYSTEMS. 6.1 The 'Grey Box' Nature Of Karst. 6.2 Surface Exploration And Survey Techniques. 6.3 Investigating Recharge And Percolation In The Vadose Zone. 6.4 Borehole Analysis. 6.5 Spring Hydrograph Analysis. 6.6 Polje Hydrograph Analysis. 6.7 Spring Chemograph Interpretation. 6.8 Storage Volumes And Flow Routing Under Different States Of The Hydrograph. 6.9 Interpreting The Organisation Of A Karst Aquifer. 6.10 Water Tracing Techniques. 6.11 Computer Modelling Of Karst Aquifers. CHAPTER 7. SPELEOGENESIS: THE DEVELOPMENT OF CAVE SYSTEMS. 7.1 Classifying Cave Systems. 7.2 Building The Plan Patterns Of Unconfined Caves. 7.3 Unconfined Cave Development In Length And Depth. 7.4 System Modifications Occurring Within A Single Phase. 7.5 Multi-Phase Cave Systems. 7.6 Meteoric Water Caves Developed Where There Is Confined Circulation Or Basal Injection Of Water. 7.7 Hypogene Caves: (A) Hydrothermal Caves Associated Chiefly With Co2. 7.8 Hypogene Caves: (B) Caves Formed By Waters Containing H2s. 7.9 Sea Coast Eogenetic Caves. 7.10 Passage Cross-Sections And Smaller Features Of Erosional Morphology. 7.11 Condensation, Condensation Corrosion, And Weathering In Caves. 7.12 Breakdown In Caves. CHAPTER 8. CAVE INTERIOR DEPOSITS. 8.1 Introduction. 8.2 Clastic Sediments. 8.3 Calcite, Aragonite And Other Carbonate Precipitates. 8.4 Other Cave Minerals. 8.5 Ice In Caves. 8.6 Dating Of Calcite Speleothems And Other Cave Deposits. 8.7 Paleo-Environmental Analysis Of Calcite Speleothems. 8.8 Mass Flux Through A Cave System: The Example Of Friar's Hole, W.Va. CHAPTER 9. KARST LANDFORM DEVELOPMENT IN HUMID REGIONS. 9.1 Coupled Hydrological And Geochemical Systems. 9.2 Small Scale Solution Sculpture - Microkarren And Karren. 9.3 Dolines - The 'Diagnostic' Karst Landform? 9.4 The Origin And Development Of Solution Dolines. 9.5 The Origin Of Collapse And Subsidence Depressions. 9.6 Polygonal Karst. 9.7 Morphometric Analysis Of Solution Dolines. 9.8 Landforms Associated With Allogenic Inputs. 9.9 Karst Poljes. 9.10 Corrosional Plains And Shifts In Baselevel. 9.11 Residual Hills On Karst Plains. 9.12 Depositional And Constructional Karst Features. 9.13 Special Features Of Evaporite Terrains. 9.14 Karstic Features Of Quartzose And Other Rocks. 9.15 Sequences Of Carbonate Karst Evolution In Humid Terrains. CHAPTER 10.THE INFLUENCE OF CLIMATE, CLIMATIC CHANGE AND OTHER ENVIRONMENTAL FACTORS ON KARST DEVELOPMENT. 10.1 The Precepts Of Climatic Geomorphology. 10.2 The Hot Arid Extreme. 10.3 The Cold Extreme: 1 Karst Development In Glaciated Terrains. 10.4 The Cold Extreme: 2 Karst Development In Permafrozen Terrains. 10.5 Sea Level Changes, Tectonic Movement And Implications For Coastal Karst Development. 10.6 Polycyclic, Polygenetic And Exhumed Karsts. CHAPTER 11. KARST WATER RESOURCES MANAGEMENT. 11.1 Water Resources And Sustainable Yields. 11.2 Determination Of Available Water Resources. 11.3 Karst Hydrogeological Mapping. 11.4 Human Impacts On Karst Water. 11.5 Groundwater Vulnerability, Protection, And Risk Mapping. 11.6 Dam Building, Leakages, Failures And Impacts. CHAPTER 12. HUMAN IMPACTS AND ENVIRONMENTAL REHABILITATION. 12.1 The Inherent Vulnerability Of Karst Systems. 12.2 Deforestation, Agricultural Impacts And Rocky Desertification. 12.3 Sinkholes Induced By De-Watering, Surcharging, Solution Mining And Other Practices On Karst. 12.4 Problems Of Construction On And In The Karst Rocks - Expect The Unexpected! 12.5 Industrial Exploitation Of Karst Rocks And Minerals. 12.6 Restoration Of Karstlands And Rehabilitation Of Limestone Quarries. 12.7 Sustainable Management Of Karst. 12.8 Scientific, Cultural And Recreational Values Of Karstlands.

2,108 citations

Journal ArticleDOI
28 Feb 2008-Nature
TL;DR: An absolute-dated oxygen isotope record from Sanbao cave, central China, is presented that completes a Chinese-cave-based record of the strength of the East Asian monsoon that covers the past 224,000 years, supporting the idea that tropical/subtropical monsoons respond dominantly and directly to changes in Northern Hemisphere summer insolation on orbital timescales.
Abstract: Stalactites, stalagmites and the many other forms of mineral deposits found in caves are a mainstay of climate studies, recording oxygen isotope ratios in limestone laid down over time. That pattern links to the water temperature of ancient oceans, and thus to climate. A new oxygen isotope record from Sanbao Cave, central China, tells the story of the region's climate stretching back 200,000 years, filling gaps in the record of a particularly important climate event, the East Asian monsoon. High-resolution speleothem records from China have provided insights into the factors that control the strength of the East Asian monsoon1,2,3,4. Our understanding of these factors remains incomplete, however, owing to gaps in the record of monsoon history over the past two interglacial–glacial cycles. In particular, missing sections have hampered our ability to test ideas about orbital-scale controls on the monsoon5,6,7, the causes of millennial-scale events8,9 and relationships between changes in the monsoon and climate in other regions. Here we present an absolute-dated oxygen isotope record from Sanbao cave, central China, that completes a Chinese-cave-based record of the strength of the East Asian monsoon that covers the past 224,000 years. The record is dominated by 23,000-year-long cycles that are synchronous within dating errors with summer insolation at 65° N (ref. 10), supporting the idea that tropical/subtropical monsoons respond dominantly and directly to changes in Northern Hemisphere summer insolation on orbital timescales5. The cycles are punctuated by millennial-scale strong-summer-monsoon events (Chinese interstadials1), and the new record allows us to identify the complete series of these events over the past two interglacial–glacial cycles. Their duration decreases and their frequency increases during glacial build-up in both the last and penultimate glacial periods, indicating that ice sheet size affects their character and pacing. The ages of the events are exceptionally well constrained and may thus serve as benchmarks for correlating and calibrating climate records.

1,603 citations

Journal ArticleDOI
TL;DR: The authors used selected proxy-based reconstructions of different climate variables, together with state-of-the-art time series of natural forcings (orbital variations, solar activity variations, large tropical volcanic eruptions, land cover and greenhouse gases), underpinned by results from GCMs and Earth System Models of Intermediate Complexity (EMICs), to establish a comprehensive explanatory framework for climate changes from the mid-Holocene (MH) to pre-industrial time.

1,539 citations