scispace - formally typeset
Search or ask a question
Author

Udo Seifert

Bio: Udo Seifert is an academic researcher from University of Stuttgart. The author has contributed to research in topics: Entropy production & Fluctuation theorem. The author has an hindex of 74, co-authored 308 publications receiving 22363 citations. Previous affiliations of Udo Seifert include Forschungszentrum Jülich & Technische Universität München.


Papers
More filters
Journal ArticleDOI
TL;DR: This work considers nanosized artificial or biological machines working in steady state enforced by imposing nonequilibrium concentrations of solutes or by applying external forces, torques, or electric fields as well as weakly coupled multicyclic machines.
Abstract: We consider nanosized artificial or biological machines working in steady state enforced by imposing nonequilibrium concentrations of solutes or by applying external forces, torques, or electric fields. For unicyclic and strongly coupled multicyclic machines, efficiency at maximum power is not bounded by the linear response value 1/2. For strong driving, it can even approach the thermodynamic limit 1. Quite generally, such machines fall into three different classes characterized, respectively, as "strong and efficient," "strong and inefficient," and "balanced." For weakly coupled multicyclic machines, efficiency at maximum power has lost any universality even in the linear response regime.

99 citations

Journal ArticleDOI
Udo Seifert1
TL;DR: In this paper, the Lagrange multiplier was used to enforce the area constraint in the case of quasi-spherical vesicles, and the validity of the conventional approach using an effective tension was assessed.
Abstract: Vesicles are closed surfaces of bilayer membranes. Their mean shapes and fluctuations are governed by the competition of curvature energy and geometrical constraints on the enclosed volume and total surface area. A scheme to calculate these fluctuations to lowest order in the ratio of temperature to bending rigidity is developed. It is shown that for fluctuations that break a symmetry of the mean shape the area constraint indeed acts like a tension whose value is given by the Lagrange multiplier used to enforce the area constraint in the first place. As a consequence, these fluctuations are also insensitive to the specific variants of the curvature model. For fluctuations that preserve the symmetry of the mean shape the role of the area constraint is more subtle. The low temperature expansion breaks down in the spherical limit where with the excess area another small parameter enters. By incorporating the area constraint in this limit exactly, the validity of the conventional approach using an effective tension for fluctuations of quasi-spherical vesicles can be assessed.

94 citations

Journal ArticleDOI
TL;DR: It is shown that the bound on the Fano factor that depends on the thermodynamic affinity driving the transformation from substrate to product constrains the number of intermediate states of an enzymatic cycle can be extended to arbitrary multicyclic networks.
Abstract: The Fano factor, an observable quantifying fluctuations of product generation by a single enzyme, can reveal information about the underlying reaction scheme. A lower bound on this Fano factor that depends on the thermodynamic affinity driving the transformation from substrate to product constrains the number of intermediate states of an enzymatic cycle. So far, this bound has been proven only for a unicyclic network of states. We show that the bound can be extended to arbitrary multicyclic networks, with the Fano factor constraining the largest value of the effective length, which is the ratio between the number of states and the number of products, among all cycles.

92 citations

Journal ArticleDOI
01 Apr 2005-EPL
TL;DR: In this paper, a fluctuation theorem that relates the number of backward steps to that of forward steps was proposed for a three-state motor with and without an intermediate state and an enzym with Michaelis-Menten kinetics.
Abstract: Cyclically operating enzyms and molecular motors are shown to be restricted non-linearly by a fluctuation theorem that basically relates the number of backward steps to that of forward steps. Only if the rates obey a quasi-equilibrium form in terms of chemical potentials and mechanical load, this fluctuation theorem becomes the usual one for entropy fluctuations. Boundary terms can be subsumed under an entropy change if one defines a trajectory-dependent entropy of the enzym or motor. Explicit expressions are derived for a three-state motor with and without an intermediate state and an enzym with Michaelis-Menten kinetics.

87 citations

Journal ArticleDOI
TL;DR: Universal bounds on this rate function follow which prove and generalize the thermodynamic uncertainty relation that quantifies the inevitable trade-off between cost and precision of any biomolecular process.
Abstract: In these lecture notes, the basic principles of stochastic thermodynamics are developed starting with a closed system in contact with a heat bath. A trajectory undergoes Markovian transitions between observable meso-states that correspond to a coarse-grained description of, e.g., a biomolecule or a biochemical network. By separating the closed system into a core system and into reservoirs for ligands and reactants that bind to, and react with the core system, a description as an open system controlled by chemical potentials and possibly an external force is achieved. Entropy production and further thermodynamic quantities defined along a trajectory obey various fluctuation theorems. For describing fluctuations in a non-equilibrium steady state in the long-time limit, the concept of a rate function for large deviations from the mean behavior is derived from the weight of a trajectory. Universal bounds on this rate function follow which prove and generalize the thermodynamic uncertainty relation that quantifies the inevitable trade-off between cost and precision of any biomolecular process. Specific illustrations are given for molecular motors, Brownian clocks and enzymatic networks that show how these tools can be used for thermodynamic inference of hidden properties of a system.

87 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry.
Abstract: The calculation of rate coefficients is a discipline of nonlinear science of importance to much of physics, chemistry, engineering, and biology. Fifty years after Kramers' seminal paper on thermally activated barrier crossing, the authors report, extend, and interpret much of our current understanding relating to theories of noise-activated escape, for which many of the notable contributions are originating from the communities both of physics and of physical chemistry. Theoretical as well as numerical approaches are discussed for single- and many-dimensional metastable systems (including fields) in gases and condensed phases. The role of many-dimensional transition-state theory is contrasted with Kramers' reaction-rate theory for moderate-to-strong friction; the authors emphasize the physical situation and the close connection between unimolecular rate theory and Kramers' work for weakly damped systems. The rate theory accounting for memory friction is presented, together with a unifying theoretical approach which covers the whole regime of weak-to-moderate-to-strong friction on the same basis (turnover theory). The peculiarities of noise-activated escape in a variety of physically different metastable potential configurations is elucidated in terms of the mean-first-passage-time technique. Moreover, the role and the complexity of escape in driven systems exhibiting possibly multiple, metastable stationary nonequilibrium states is identified. At lower temperatures, quantum tunneling effects start to dominate the rate mechanism. The early quantum approaches as well as the latest quantum versions of Kramers' theory are discussed, thereby providing a description of dissipative escape events at all temperatures. In addition, an attempt is made to discuss prominent experimental work as it relates to Kramers' reaction-rate theory and to indicate the most important areas for future research in theory and experiment.

5,180 citations

Journal ArticleDOI
TL;DR: Van Kampen as mentioned in this paper provides an extensive graduate-level introduction which is clear, cautious, interesting and readable, and could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes.
Abstract: N G van Kampen 1981 Amsterdam: North-Holland xiv + 419 pp price Dfl 180 This is a book which, at a lower price, could be expected to become an essential part of the library of every physical scientist concerned with problems involving fluctuations and stochastic processes, as well as those who just enjoy a beautifully written book. It provides an extensive graduate-level introduction which is clear, cautious, interesting and readable.

3,647 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the rules of the ring, the ring population, and the need to get off the ring in order to measure the movement of a cyclic clock.
Abstract: 1980 Preface * 1999 Preface * 1999 Acknowledgements * Introduction * 1 Circular Logic * 2 Phase Singularities (Screwy Results of Circular Logic) * 3 The Rules of the Ring * 4 Ring Populations * 5 Getting Off the Ring * 6 Attracting Cycles and Isochrons * 7 Measuring the Trajectories of a Circadian Clock * 8 Populations of Attractor Cycle Oscillators * 9 Excitable Kinetics and Excitable Media * 10 The Varieties of Phaseless Experience: In Which the Geometrical Orderliness of Rhythmic Organization Breaks Down in Diverse Ways * 11 The Firefly Machine 12 Energy Metabolism in Cells * 13 The Malonic Acid Reagent ('Sodium Geometrate') * 14 Electrical Rhythmicity and Excitability in Cell Membranes * 15 The Aggregation of Slime Mold Amoebae * 16 Numerical Organizing Centers * 17 Electrical Singular Filaments in the Heart Wall * 18 Pattern Formation in the Fungi * 19 Circadian Rhythms in General * 20 The Circadian Clocks of Insect Eclosion * 21 The Flower of Kalanchoe * 22 The Cell Mitotic Cycle * 23 The Female Cycle * References * Index of Names * Index of Subjects

3,424 citations